| 注册
首页|期刊导航|计算机与现代化|基于图像分割的无人机影像AGP计算方法

基于图像分割的无人机影像AGP计算方法

李楷 金云鹏 李海洋 孔莎莎 杨鹏 方成梧 黄湘杰 韩耀升 李春梅

计算机与现代化Issue(4):83-88,6.
计算机与现代化Issue(4):83-88,6.DOI:10.3969/j.issn.1006-2475.2025.04.013

基于图像分割的无人机影像AGP计算方法

AGP Calculation Methods in UAV Imagery Based on Image Segmentation

李楷 1金云鹏 1李海洋 1孔莎莎 1杨鹏 1方成梧 1黄湘杰 1韩耀升 1李春梅1

作者信息

  • 1. 青海大学计算机技术与应用系,青海 西宁 810016
  • 折叠

摘要

Abstract

Grassland degradation is a critical issue in the Three Rivers Source Region that cannot be overlooked.Employing deep learning techniques for the evaluating of grassland degradation in the Three Rivers Source Region is a pivotal step towards intelli-gent grassland assessment.However,a challenge in semantic segmentation lies in the potential inconsistency of altitudes in UAV-captured imagery,which can lead to discrepancies between computed proportions of poisonous weed cover and actual con-ditions,consequently introducing errors in grassland degradation assessment.This study proposes a method to calculate the Ac-tual Ground Proportion(AGP)for both known and unknown heights of captured grassland images.For images with known heights,we select to utilize the captured altitude for AGP calculation and then map images of varying altitudes to a common height for coverage computation.For images with unknown heights,we train a sorrel instance segmentation model to calculate AGP based on instance segmentation results,followed by coverage computation.Experimental restlts demonstrate that,in com-parison to direct coverage calculation,the use of instance segmentation reduces the error from 2.7%to 0.39%.This approach holds significant importance in enhancing the accuracy of intelligent grassland degradation assessment.

关键词

深度学习/实例分割/无人机影像/草地退化

Key words

deep learning/instance segmentation/UAV imagery/grassland degradation

分类

信息技术与安全科学

引用本文复制引用

李楷,金云鹏,李海洋,孔莎莎,杨鹏,方成梧,黄湘杰,韩耀升,李春梅..基于图像分割的无人机影像AGP计算方法[J].计算机与现代化,2025,(4):83-88,6.

基金项目

国家自然科学基金资助项目(62166033) (62166033)

计算机与现代化

1006-2475

访问量0
|
下载量0
段落导航相关论文