| 注册
首页|期刊导航|计算机科学与探索|深度学习在结肠息肉图像分割中的研究综述

深度学习在结肠息肉图像分割中的研究综述

李国威 刘静 曹慧 姜良

计算机科学与探索2025,Vol.19Issue(5):1198-1216,19.
计算机科学与探索2025,Vol.19Issue(5):1198-1216,19.DOI:10.3778/j.issn.1673-9418.2408012

深度学习在结肠息肉图像分割中的研究综述

Research Review of Deep Learning in Colon Polyp Image Segmentation

李国威 1刘静 1曹慧 1姜良1

作者信息

  • 1. 山东中医药大学 医学信息工程学院,济南 250355
  • 折叠

摘要

Abstract

Colorectal polyp is an abnormal tissue growing in the gastrointestinal tract with the potential to develop into colorectal cancer.Therefore,early detection and removal of colorectal polyps are crucial for preventing colorectal cancer.In recent years,deep learning technology has made significant strides in the field of colonic polyp image segmentation,substantially enhancing both the accuracy and automation levels of segmentation.This paper focuses on research related to deep learning in colorectal polyp image segmentation.Firstly,it introduces various imaging techniques for colonic polyps and commonly used datasets,including both image and video datasets,and elaborates on the characteristics of these datasets.Subsequently,the deep learning-based segmentation methods are summarized,covering fully convolutional networks,Mask R-CNN,generative adversarial networks,U-Net,Transformer,and multi-network fusion models.Particular emphasis is placed on the application of U-Net and its variants in colonic polyp image segmentation,analyzing their structural improvements,performance enhancements,and practical application outcomes.Furthermore,the review comprehensively compares the main improvements,advantages,disadvantages,and segmentation results of each network model.Finally,it points out the main challenges currently faced by deep learning in this field and provides an outlook on future research directions.

关键词

结肠息肉分割/深度学习/医学图像/卷积神经网络/U-Net

Key words

colonic polyp segmentation/deep learning/medical imaging/convolutional neural networks/U-Net

分类

计算机与自动化

引用本文复制引用

李国威,刘静,曹慧,姜良..深度学习在结肠息肉图像分割中的研究综述[J].计算机科学与探索,2025,19(5):1198-1216,19.

基金项目

国家自然科学基金(82374620). This work was supported by the National Natural Science Foundation of China(82374620). (82374620)

计算机科学与探索

OA北大核心

1673-9418

访问量0
|
下载量0
段落导航相关论文