| 注册
首页|期刊导航|空间控制技术与应用|多技能人形机器人全身运动策略智能生成方法

多技能人形机器人全身运动策略智能生成方法

张玲俊 汤亮 刘磊

空间控制技术与应用2025,Vol.51Issue(2):28-40,13.
空间控制技术与应用2025,Vol.51Issue(2):28-40,13.DOI:10.3969/j.issn.1674-1579.2025.02.003

多技能人形机器人全身运动策略智能生成方法

Whole-Body Motion Strategy Intelligent Generation Method for Multi-Skilled Humanoid Robots

张玲俊 1汤亮 2刘磊2

作者信息

  • 1. 北京控制工程研究所,北京 100094
  • 2. 北京控制工程研究所,北京 100094||空间智能控制技术全国重点实验室,北京 100094
  • 折叠

摘要

Abstract

To address the challenge of enabling humanoid robots to acquire diverse whole-body motion skills under a single policy model while ensuring high-quality motion execution and smooth transitions between skills,a novel efficient multi-skill imitation learning method termed single model imitation learning for multi-skill efficiency(SMILE)is proposed.SMILE integrates goal-conditioned reinforcement learning(GCRL)and generative adversarial imitation learning(GAIL),introducing preference-based rewards tailored to the distinct motion characteristics of diverse skills,thereby mitigating the risk of convergence toward suboptimal policies.Furthermore,an adaptive failure-frequency-based priority sampling strategy is adopted,increasing the sampling probability of challenging samples to enhance learning efficiency and overall performance.Simulation results demonstrate that SMILE facilitates humanoid robots in performing diverse human-like whole-body motions,including standing,squatting,walking,obstacle jumping,stooping down for detailed inspection,and object picking.The trained policy achieves smooth skill transitions with an overall success rate of 93.33%,providing novel insights into multi-skill imitation learning for humanoid robots.

关键词

人形机器人/强化学习/模仿学习/奖励塑造

Key words

humanoid robots/reinforcement learning/imitation learning/reward shaping

引用本文复制引用

张玲俊,汤亮,刘磊..多技能人形机器人全身运动策略智能生成方法[J].空间控制技术与应用,2025,51(2):28-40,13.

空间控制技术与应用

OA北大核心

1674-1579

访问量6
|
下载量0
段落导航相关论文