| 注册
首页|期刊导航|煤质技术|基于轻量级YOLOv8的坩埚缺陷识别算法

基于轻量级YOLOv8的坩埚缺陷识别算法

罗彬彬 庞晴蔚 康希平

煤质技术2025,Vol.40Issue(2):85-90,96,7.
煤质技术2025,Vol.40Issue(2):85-90,96,7.DOI:10.3969/j.issn.1007-7677.2025.02.012

基于轻量级YOLOv8的坩埚缺陷识别算法

Crucible defect recognition based on lightweight YOLOv8

罗彬彬 1庞晴蔚 1康希平1

作者信息

  • 1. 长沙开元仪器有限公司,湖南 长沙 410100
  • 折叠

摘要

Abstract

To address the challenges of low detection reliability in robotic intelligent laboratory systems caused by sig-nificant geometric diversity of crucibles and imbalanced defect sample distribution,this paper proposes a crucible de-fect detection method based on the lightweight YOLOv8.Firstly,an image data augmentation strategy using Denoising Diffusion Probabilistic Model(DDPM)is introduced to balance and expand crucible image data according to the dis-tribution of data labels.Subsequently,to better balance the inference speed and detection accuracy of the network model,an improved YOLOv8 crucible defect detection algorithm is proposed,incorporating a non-parametric atten-tion mechanism and an adaptive weighting scheme.Experimental results demonstrate that the proposed method a-chieves a mean Average Precision(mAP)of 97.40%with an inference time of 1.20 ms per image.Although the in-ference speed is 0.2 ms slower than YOLOv11-n,the detection accuracy is optimal among current general object de-tection methods,especially lightweight ones.The proposed method can be effectively applied in industrial crucible defect detection scenarios.

关键词

坩埚缺陷识别算法/机器人智能化验系统/YOLOv8/数据扩充/目标检测/加权机制/推理时间

Key words

crucible defect recognition algorithm/robotic intelligent laboratory system/YOLOv8/data augmenta-tion/object detection/weighted mechanism/inference time

分类

化学工程

引用本文复制引用

罗彬彬,庞晴蔚,康希平..基于轻量级YOLOv8的坩埚缺陷识别算法[J].煤质技术,2025,40(2):85-90,96,7.

基金项目

岳麓山工业创新中心衡山实验室科研基金资助项目(HST2312) (HST2312)

煤质技术

1007-7677

访问量0
|
下载量0
段落导航相关论文