| 注册
首页|期刊导航|石油科学通报|小样本条件下的储层物性参数智能解释方法研究

小样本条件下的储层物性参数智能解释方法研究

邬德刚 吴胜和 张玉飞 余季陶

石油科学通报2025,Vol.10Issue(2):378-391,14.
石油科学通报2025,Vol.10Issue(2):378-391,14.DOI:10.3969/j.issn.2096-1693.2025.01.008

小样本条件下的储层物性参数智能解释方法研究

Research on intelligent interpretation methods for reservoir physical parameters under few-shot conditions

邬德刚 1吴胜和 2张玉飞 3余季陶2

作者信息

  • 1. 中国石油大学(北京)人工智能学院,北京 102249||中国石油大学(北京)地球科学学院,北京 102249||中国石油大学(北京)油气资源与工程全国重点实验室,北京 102249
  • 2. 中国石油大学(北京)地球科学学院,北京 102249||中国石油大学(北京)油气资源与工程全国重点实验室,北京 102249
  • 3. 中海石油(中国)有限公司海南分公司,海口 570312
  • 折叠

摘要

Abstract

Reservoir physical parameters serve as fundamental quantitative indices for characterizing the storage capacity and fluid percolation potential of subsurface reservoirs.Well logging interpretation,a critical methodology for accurately estimating these parameters,constitutes a sophisticated nonlinear regression challenge.To address the inherent limitations of existing petrophysical parameter interpretation techniques,particularly their inadequate generalization performance under few-shot learning conditions,this investigation systematically devises a dual-framework analytical approach.This study initially proposes a sample optimization methodology based on cluster analysis.The spatial configuration of samples is partitioned through the implementation of the K-means clustering algorithm,followed by selective sample curation according to spatial distribution char-acteristics to maximize learning sample diversity.Building upon this optimized sample architecture,the study further introduces a hierarchical residual neural network-based interpretation framework for petrophysical parameter estimation.The proposed methodology enhances conventional fully connected neural architecture through four innovative mechanisms:(1)Integration of cross-layer residual connections facilitates progressive refinement of residual mappings between multivariate logging inputs and target petrophysical outputs,thereby enabling hierarchical abstraction of complex petrophysical relationships from limited training instances.(2)The integration of ensemble learning paradigms amalgamates diverse machine learning methodologies,effectively mitigating overfitting risks through algorithmic diversity.(3)The implementation of a multi-task learning framework establishes intrinsic correlations between porosity and permeability interpretation tasks via shared latent representations,thereby enhancing individual task generalizability under data scarcity constraints.(4)The introduction of a quadratically weighted root mean square error loss function preferentially reduces interpretation errors in high-permeability reservoir intervals.Results from 90 rigorously designed comparative experimental configurations in the study area demonstrate that the cluster-based sample opti-mization methodology effectively enhances generalization performance across multiple machine learning models under few-shot learning constraints.Application of the proposed hierarchical residual neural network framework for well-logging interpretation of reservoir porosity and permeability within the investigated reservoir area achieves coefficients of determination of 88%and 94%,respectively,demonstrating statistically significant superiority over conventional methodologies in both petrophysical interpretation accuracy and generalization capability.Blind testing validation on cored wells reveals 12 and 20 percentage point improvements in predictive precision compared to other various existing methodologies,the proposed approach in this study demonstrates substantial advancements in addressing few-shot learning challenges through algorithm optimization strategies encompassing distribution-based sample selection and multi-task collaborative frameworks.This methodology significantly enhances feature representation fidelity in petrophysical datasets,exhibiting superior petrophysical interpretation accuracy and enhanced generalization capabilities.

关键词

聚类分析/残差连接/集成学习/多任务学习/储层物性参数测井解释

Key words

cluster analysis/residual connection/ensemble learning/multi task learning/logging interpretation of reservoir physical parameters

分类

天文与地球科学

引用本文复制引用

邬德刚,吴胜和,张玉飞,余季陶..小样本条件下的储层物性参数智能解释方法研究[J].石油科学通报,2025,10(2):378-391,14.

基金项目

中国石油天然气集团有限公司—中国石油大学(北京)战略合作科技专题(ZLZX2020-02)资助 (北京)

石油科学通报

2096-1693

访问量0
|
下载量0
段落导航相关论文