| 注册
首页|期刊导航|天津科技大学学报|基于强化学习框架的脓毒症抗生素多策略推荐模型

基于强化学习框架的脓毒症抗生素多策略推荐模型

王嫄 刘安岐 盛梦茹 侯佳佳 赵婷婷 于琦

天津科技大学学报2025,Vol.40Issue(2):71-80,10.
天津科技大学学报2025,Vol.40Issue(2):71-80,10.DOI:10.13364/j.issn.1672-6510.20230203

基于强化学习框架的脓毒症抗生素多策略推荐模型

A Multi-Policy Recommendation Model for Antibiotic Use in Sepsis Based on Reinforcement Learning Framework

王嫄 1刘安岐 1盛梦茹 1侯佳佳 1赵婷婷 1于琦2

作者信息

  • 1. 天津科技大学人工智能学院,天津 300457
  • 2. 山西医科大学管理学院,太原 030001
  • 折叠

摘要

Abstract

Sepsis is one of the leading causes of human death worldwide,and antibiotics are an important part of sepsis treatment.In recent years,researchers have considered medical decision-making problems as Markov decision processes and used reinforcement learning methods for treatment strategy recommendations.In this article we propose a multi-policy rec-ommendation framework combining value-based and policy-based reinforcement learning methods for antibiotic use in sep-sis treatment.Different decision regions are defined based on patient characteristic information,and the multi-policy model provides personalized treatment recommendations.The results show that our multi-policy selection model can achieve a good prognosis for patients in 80.32%of cases.Through statistical analysis of decision trajectories and drug action selection,our model can provide reasonable drug recommendations in accordance with clinical practice,and recommend appropriate anti-biotic combinations to improve patient prognosis.

关键词

强化学习/医疗决策/脓毒症

Key words

reinforcement learning/medical decision-making/sepsis

分类

信息技术与安全科学

引用本文复制引用

王嫄,刘安岐,盛梦茹,侯佳佳,赵婷婷,于琦..基于强化学习框架的脓毒症抗生素多策略推荐模型[J].天津科技大学学报,2025,40(2):71-80,10.

基金项目

国家自然科学基金项目(61976156) (61976156)

天津市科技特派员项目(20YDTPJC00560) (20YDTPJC00560)

天津科技大学学报

1672-6510

访问量6
|
下载量0
段落导航相关论文