西北师范大学学报(自然科学版)2025,Vol.61Issue(3):118-122,5.DOI:10.16783/j.cnki.nwnuz.2025.03.013
二维与三维圆环间组合能量的极值问题
Extremal problem for combined energy between in annuli R2 and R3
摘要
Abstract
The extremal problem of the combined energy between two-dimensional annuli is discussed in R2 and R3,and a Nitsche-type inequality is obtained by using the Euler-Lagrange equation.Under the condition of this inequality,it is proved that the radial stretch mapping is the unique extremal value of its extremal problem.关键词
组合能量/Nitsche型不等式/极值问题/Euler-Lagrange方程Key words
combined energy/Nitsche-type inequality/extremal problem/Euler-Lagrange equation分类
数理科学引用本文复制引用
徐丹,王朝川,杨敏..二维与三维圆环间组合能量的极值问题[J].西北师范大学学报(自然科学版),2025,61(3):118-122,5.基金项目
国家自然科学重点资助项目(11701459) (11701459)