| 注册
首页|期刊导航|物探与化探|最小二乘配置在磁力异常数据网格化中的应用

最小二乘配置在磁力异常数据网格化中的应用

高小伟 李雄伟 庞少东 李文刚 姚伟华 杜劲松

物探与化探2025,Vol.49Issue(2):422-432,11.
物探与化探2025,Vol.49Issue(2):422-432,11.DOI:10.11720/wtyht.2025.1286

最小二乘配置在磁力异常数据网格化中的应用

Application of least-squares collocation to the gridding of magnetic anomaly data

高小伟 1李雄伟 1庞少东 1李文刚 1姚伟华 1杜劲松2

作者信息

  • 1. 中煤科工西安研究院(集团)有限公司,陕西 西安 710077
  • 2. 中国地质大学(武汉)地球物理与空间信息学院 地球内部多尺度成像湖北省重点实验室,湖北 武汉 430074||中国地质大学(武汉)地质过程与成矿预测全国重点实验室,湖北 武汉 430074
  • 折叠

摘要

Abstract

Traditional gridding methods struggle to balance computational accuracy and efficiency when processing irregularly distribu-ted magnetic anomaly data.To address this issue,this study applied the classic least-squares collocation method from geodesy to the gridding of ground-based magnetic anomaly data.This application was verified through the test and analysis of the simulation data and the actual coalfield data.The results indicate that the computational accuracy of gridding based on least-squares collocation is dictated by the error estimation of discrete observational data and the selection and fitting of the covariance function.More accurate error estima-tion contributes to higher-accuracy interpolation.A polynomial function is a simple and effective empirical covariance function for pro-cessing magnetic anomaly data.The least-squares collocation method demonstrates more effective noise suppression compared to the Kriging,minimum curvature,and radial basis function methods.Overall,applying the least-squares collocation to the gridding of mag-netic anomaly data can enhance the accuracy and efficiency of data processing.

关键词

最小二乘配置/磁力异常/网格化/插值/协方差函数

Key words

least-squares collocation/magnetic anomaly/gridding/interpolation/covariance function

分类

地质学

引用本文复制引用

高小伟,李雄伟,庞少东,李文刚,姚伟华,杜劲松..最小二乘配置在磁力异常数据网格化中的应用[J].物探与化探,2025,49(2):422-432,11.

基金项目

中煤科工西安研究院(集团)有限公司科技创新基金项目(2022XAYJS06) (集团)

陕西省自然科学基金重点研发计划项目(2022SF-046) (2022SF-046)

国家自然科学基金面上项目(42174090) (42174090)

物探与化探

1000-8918

访问量0
|
下载量0
段落导航相关论文