| 注册
首页|期刊导航|现代电子技术|基于多尺度焦点自注意力的膝骨关节炎分级方法

基于多尺度焦点自注意力的膝骨关节炎分级方法

蔡晓宇 汪宇玲

现代电子技术2025,Vol.48Issue(9):15-23,9.
现代电子技术2025,Vol.48Issue(9):15-23,9.DOI:10.16652/j.issn.1004-373x.2025.09.003

基于多尺度焦点自注意力的膝骨关节炎分级方法

Knee osteoarthritis grading method based on multi-scale focal self-attention

蔡晓宇 1汪宇玲1

作者信息

  • 1. 东华理工大学 信息工程学院,江西 南昌 330000
  • 折叠

摘要

Abstract

Early detection and grading of knee osteoarthritis(KOA)is an important diagnostic basis for improving the quality of life of chronic arthritis patients.Therefore,a KOA hierarchical model MSFFormer(multi-scale focal transformer)based on multi-scale focal self-attention is proposed.In the model,the dominant spatial prior technology is combined with the self-attention mechanism,the Y-axial spatial decay mechanism is designed to construct the two-dimensional dominant spatial prior matrix,and the multi-scale focus attention is proposed in combination with the self-attention mechanism to make the model pay more attention to the correlation features between the lesion area and adjacent areas in KOA images,while reducing the attention redundancy caused by irrelevant background.In comparison with the other advanced methods in the open knee osteoarthritis dataset OAI(osteoarthritis initiative),the accuracy of MSFFormer in the early KOA two-grading tasks and KOA five-class KL(Kellgren and Lawrence system)grading tasks has improved by 1.73%and 0.88%,respectively.Therefore,it is verified that the MSFFormer is more conducive to the early detection and grading of KOA.

关键词

计算机辅助诊断/X线片图像/膝骨关节炎/深度学习/Transformer/自注意力机制

Key words

computer aided diagnosis/X-ray image/knee osteoarthritis/deep learning/Transformer/self-attention mechanism

分类

电子信息工程

引用本文复制引用

蔡晓宇,汪宇玲..基于多尺度焦点自注意力的膝骨关节炎分级方法[J].现代电子技术,2025,48(9):15-23,9.

基金项目

国家自然科学基金项目(62066003) (62066003)

国家留学基金项目(CSC202208360143) (CSC202208360143)

现代电子技术

OA北大核心

1004-373X

访问量0
|
下载量0
段落导航相关论文