| 注册
首页|期刊导航|中国组织工程研究|对比6种适用于医学领域使用的机器学习模型:支持骨质疏松症筛查和初步诊断

对比6种适用于医学领域使用的机器学习模型:支持骨质疏松症筛查和初步诊断

杨磊 刘三毛 孙焕伟 车超 唐琳

中国组织工程研究2025,Vol.29Issue(35):7499-7510,12.
中国组织工程研究2025,Vol.29Issue(35):7499-7510,12.DOI:10.12307/2025.947

对比6种适用于医学领域使用的机器学习模型:支持骨质疏松症筛查和初步诊断

Comparison of six machine learning models suitable for use in medicine:support for osteoporosis screening and initial diagnosis

杨磊 1刘三毛 2孙焕伟 3车超 1唐琳1

作者信息

  • 1. 大连大学软件工程学院,辽宁省大连市 116622
  • 2. 广西医科大学第一附属医院,广西壮族自治区南宁市 530021||大连理工大学附属中心医院,辽宁省大连市 116033
  • 3. 大连理工大学附属中心医院,辽宁省大连市 116033
  • 折叠

摘要

Abstract

BACKGROUND:With the increasing degree of population aging in China,the incidence of osteoporosis is rising annually.This growing demand for screening and diagnosis poses significant challenges to the healthcare system,increasing the time costs,financial burdens,and radiation exposure risks for patients. OBJECTIVE:To develop a novel interpretable prediction method based on traditional CT examination data and demographic data,aiming to reduce the number of patient examinations and enable multiple screenings from one examination. METHODS:A two-stage interpretable framework for osteoporosis prediction was designed.In the first stage,a human-computer collaborative method was used for annotating CT images,with an innovative vertebra 7-point CT value measurement technique.Patient's sex and age were used as key demographic features to enrich the model's input.In the second stage,the LightGBM model was enhanced by SHapley Additive exPlanations for quantitative analysis of feature importance,improving the interpretability of predictions and increasing clinical trust.Systematic experiments validated the effectiveness of the framework and the stability of the optimal feature set through the comparative analysis of different feature combinations with six machine learning models.To further assess the generalization ability of the model,the model was further tested on an external dataset. RESULTS AND CONCLUSION:The experiment compared six machine learning models suitable for medical applications,and the results showed that LightGBM model achieved an F1 score of 0.902 2 and an area under the curve of 0.938 7,outperforming the other models.In terms of interpretability,the clinical application credibility and operability of the model was increased by ranking and visualizing the contribution of input features to the results.Additionally,this study realized a prototype system,and testing results indicated that the system is user-friendly,capable of quickly processing data to provide prediction results,with visualized outcomes demonstrating good interpretability.This system effectively assists doctors in clinical decision-making and provides robust support for the screening and preliminary diagnosis of osteoporosis.

关键词

骨质疏松/CT/临床辅助决策/临床决策支持/可解释性预测模型/集成学习/LightGBM模型/SHAP

Key words

osteoporosis/CT/clinical decision aid/clinical decision support/interpretable predictive modeling/integrated learning/LightGBM model/SHapley Additive exPlanations

分类

临床医学

引用本文复制引用

杨磊,刘三毛,孙焕伟,车超,唐琳..对比6种适用于医学领域使用的机器学习模型:支持骨质疏松症筛查和初步诊断[J].中国组织工程研究,2025,29(35):7499-7510,12.

基金项目

国家自然科学基金面上项目(62076045),项目负责人:车超 (62076045)

大连大学学科交叉项目(DLUXK-2023-YB-003),项目负责人:车超 National Natural Science Foundation of China,No.62076045(to CC) (DLUXK-2023-YB-003)

Dalian University Discipline Crossing Project,No.DLUXK-2023-YB-003(to CC) (to CC)

中国组织工程研究

OA北大核心

2095-4344

访问量1
|
下载量0
段落导航相关论文