| 注册
首页|期刊导航|中国组织工程研究|基于深度学习改进的膝骨关节炎自动诊断方法

基于深度学习改进的膝骨关节炎自动诊断方法

方颖 张延伟 利晞 颜培栋 毕苗

中国组织工程研究2025,Vol.29Issue(35):7511-7518,8.
中国组织工程研究2025,Vol.29Issue(35):7511-7518,8.DOI:10.12307/2026.533

基于深度学习改进的膝骨关节炎自动诊断方法

Improvements in automatic diagnosis methods for knee osteoarthritis based on deep learning

方颖 1张延伟 2利晞 3颜培栋 4毕苗1

作者信息

  • 1. 广州中医药大学第三临床医学院,广东省 广州市 510403
  • 2. 广州中医药大学第三附属医院影像科,广东省 广州市 510378
  • 3. 广州医科大学附属第二医院放射科,广东省 广州市 510260
  • 4. 暨南大学附属珠海临床医学院,广东省珠海市 519099
  • 折叠

摘要

Abstract

BACKGROUND:Knee osteoarthritis is a common degenerative disease that significantly impacts patients'quality of life and increases the societal healthcare burden.Early and accurate diagnosis of knee osteoarthritis is crucial for the treatment and prognosis of patients.Traditional diagnostic methods are not only subjective and time-consuming but also do not guarantee consistently high accuracy. OBJECTIVE:To develop an automatic diagnostic method for knee osteoarthritis based on deep learning,utilizing deep learning networks to improve diagnostic accuracy and efficiency. METHODS:A new network model,YOLOV8-ViT,was proposed by replacing the backbone network of YOLOv8n with the Efficient-ViT network and incorporating attention mechanisms for the automatic identification and classification of X-ray images of knee osteoarthritis.The experimental dataset included 5 078 X-ray images of patients with knee osteoarthritis obtained from the Third Affiliated Hospital of Guangzhou University of Chinese Medicine.Three imaging physicians annotated the sites of knee osteoarthritis and classified them according to the Kellgren-Lawrence grading standard using Labelme software,and the results were combined.The evaluation indicators used in this study included Precision,F1 score,mean average precision(mAP),Recall,val/box_loss,val/cls_loss,and val/dfl_loss. RESULTS AND CONCLUSION:The experimental results showed that the YOLOV8-ViT model outperformed the YOLOv5n,YOLOv8n,and YOLOv9n models in terms of precision,mAP50,mAP50-95,F1 score,and Recall,while lowering val/box_loss,val/cls_loss,and val/dfl_loss by 0.496,0.45,and 0.523;1.037,0.305,and 0.728;and 0.267,0.654,and 0.854,respectively.These experimental data validate that this model has high detection accuracy.

关键词

膝骨关节炎/深度学习/YOLOv8/Transformer/目标检测/检测精度

Key words

knee osteoarthritis/deep learning/YOLOv8/Transformer/object detection/detection precision

分类

医药卫生

引用本文复制引用

方颖,张延伟,利晞,颜培栋,毕苗..基于深度学习改进的膝骨关节炎自动诊断方法[J].中国组织工程研究,2025,29(35):7511-7518,8.

中国组织工程研究

OA北大核心

2095-4344

访问量0
|
下载量0
段落导航相关论文