| 注册
首页|期刊导航|现代应用物理|基于深度学习的压水堆瞬态物理场预测方法研究

基于深度学习的压水堆瞬态物理场预测方法研究

刘家旺 刘宙宇 邵世豪 曹良志 吴宏春

现代应用物理2025,Vol.16Issue(1):115-124,10.
现代应用物理2025,Vol.16Issue(1):115-124,10.DOI:10.12061/j.issn.2095-6223.202412050

基于深度学习的压水堆瞬态物理场预测方法研究

Prediction Method for Transient Based on Deep Learning Physical Fields in Pressurized Water Reactors

刘家旺 1刘宙宇 1邵世豪 1曹良志 1吴宏春1

作者信息

  • 1. 西安交通大学核科学与技术学院,西安 710049
  • 折叠

摘要

Abstract

In this paper,a deep convolutional neural network(DCNN)model is constructed by combining the inception module and the residual network(ResNet)structure.The model can improve the accuracy and efficiency of predicting key safety parameters,such as fuel assembly power distribution,temperature distribution,and power level of the reactor,both for single-time-point and multi-time-point under transient conditions of pressurized water reactors(PWRs).Testing and analysis are conducted using a small-scale PWR model.The results show that the core parameters for a single time point can be predicted within 60 ms,with prediction deviations in fuel assembly power distribution and temperature distribution being less than 3%for both single-time-point and multi-time-point.The prediction deviation of total power for multi-time-point is less than 8%.These results demonstrate the feasibility of rapid prediction of PWR transient physical fields using deep learning techniques.

关键词

压水堆/深度学习/瞬态工况/快速预测/反应堆物理场参数

Key words

pressurized water reactor(PWR)/deep learning/transient conditions/rapid prediction/physical field parameters

分类

能源科技

引用本文复制引用

刘家旺,刘宙宇,邵世豪,曹良志,吴宏春..基于深度学习的压水堆瞬态物理场预测方法研究[J].现代应用物理,2025,16(1):115-124,10.

基金项目

国家自然科学基金资助项目(12375174,U24B2010,12375175) (12375174,U24B2010,12375175)

现代应用物理

2095-6223

访问量0
|
下载量0
段落导航相关论文