| 注册
首页|期刊导航|现代电子技术|面向复杂场景的多尺度行人和车辆检测算法

面向复杂场景的多尺度行人和车辆检测算法

王娟敏 皮建勇 黄昆 胡伟超 胡倩

现代电子技术2025,Vol.48Issue(9):143-153,11.
现代电子技术2025,Vol.48Issue(9):143-153,11.DOI:10.16652/j.issn.1004-373x.2025.09.022

面向复杂场景的多尺度行人和车辆检测算法

Multi-scale pedestrian and vehicle detection algorithm for complex scenes

王娟敏 1皮建勇 1黄昆 1胡伟超 1胡倩1

作者信息

  • 1. 贵州大学 计算机科学与技术学院 公共大数据国家重点实验室,贵州 贵阳 550000
  • 折叠

摘要

Abstract

A YOLOv8-based improved detection algorithm named RDRFM-YOLO is presented to address the issue of missed detections caused by multi-scale cases and occlusion in pedestrian and vehicle detection tasks.For the backbone network,the RFDRep module is designed to replace the convolution and C2f modules,enhancing the network's capability to capture features at different scales.For the neck network,the SFMS module is designed for optimization,improving the model's ability to extract features of occluded objects.Experiments on a custom pedestrian and vehicle dataset show that the algorithm RDRFM-YOLO outperforms the original algorithm,maintaining high detection efficiency.The mAP@0.5 of the RDRFM-YOLO reaches 56.7%,and its mAP@0.5:0.95 reaches 37.3%,which are improvements of 2.8%and 2.3%,respectively,over the original algorithm.Its parameter count and floating-point operations are 3.3×106 and 9.2×109,only increasing by 0.1×106 and 0.3×109,respectively,in comparison with those of the original algorithm.Additionally,the model shows good performance across multiple datasets.

关键词

行人和车辆检测/多尺度/遮挡/RDRFM-YOLO/RFDRep模块/SFMS模块

Key words

pedestrian and vehicle detection/multi-scale/occlusion/RDRFM-YOLO/RFDRep module/SFMS module

分类

电子信息工程

引用本文复制引用

王娟敏,皮建勇,黄昆,胡伟超,胡倩..面向复杂场景的多尺度行人和车辆检测算法[J].现代电子技术,2025,48(9):143-153,11.

现代电子技术

OA北大核心

1004-373X

访问量1
|
下载量0
段落导航相关论文