| 注册
首页|期刊导航|应用数学和力学|非凸多目标优化问题有效解集的非空性与有界性的渐近刻画

非凸多目标优化问题有效解集的非空性与有界性的渐近刻画

刘应 傅小恒 唐莉萍

应用数学和力学2025,Vol.46Issue(4):519-527,9.
应用数学和力学2025,Vol.46Issue(4):519-527,9.DOI:10.21656/1000-0887.450235

非凸多目标优化问题有效解集的非空性与有界性的渐近刻画

Asymptotic Characterization of Non-Emptiness and Boundedness of Efficient Solution Sets for Nonconvex Multi-Objective Optimization Problems

刘应 1傅小恒 2唐莉萍2

作者信息

  • 1. 重庆师范大学 数学科学学院,重庆 401331
  • 2. 重庆师范大学 重庆国家应用数学中心,重庆 401331
  • 折叠

摘要

Abstract

The non-emptiness and boundedness of the solution sets of optimization problems play a crucial role in numerical algorithms.Based on asymptotic analysis,the non-emptiness and boundedness of the(proper)ef-ficient solution sets for nonconvex multi-objective optimization problems under regularity conditions were ob-tained.Firstly,the inner and outer asymptotic estimations were established for the efficient solution sets and the properly efficient solution sets of nonconvex multi-objective optimization problems via asymptotic cones and asymptotic functions.Then,based on these estimates,the non-emptiness and boundedness of the efficient solu-tion sets for nonconvex multi-objective optimization problems were characterized.Finally,some necessary con-ditions for the existence of efficient solutions to nonconvex multi-objective optimization problem were given.

关键词

非凸多目标优化问题/有效解/正则性/渐近锥/渐近函数

Key words

nonconvex multi-objective optimization/efficient solution/regularity/asymptotic cone/asymptot-ic function

分类

数学

引用本文复制引用

刘应,傅小恒,唐莉萍..非凸多目标优化问题有效解集的非空性与有界性的渐近刻画[J].应用数学和力学,2025,46(4):519-527,9.

基金项目

国家自然科学基金(重大项目)(11991024) (重大项目)

国家自然科学基金(面上项目)(12171060) (面上项目)

重庆市自然科学基金(ncamc2022-msxm01 ()

CSTB2024NSCQ-LZX0140) ()

重庆市教委重大项目(KJZD-M202300504) 本文作者衷心感谢重庆师范大学博望学者青年拔尖人才项目和重庆师范大学启动基金项目(22XLB006)对本文的资助. (KJZD-M202300504)

应用数学和力学

OA北大核心

1000-0887

访问量0
|
下载量0
段落导航相关论文