| 注册
首页|期刊导航|智能城市|基于智慧交通空间模型数据预测研究

基于智慧交通空间模型数据预测研究

邵洪清 高剑峰 杜宇

智能城市2025,Vol.11Issue(3):34-36,3.
智能城市2025,Vol.11Issue(3):34-36,3.DOI:10.19301/j.cnki.zncs.2025.03.010

基于智慧交通空间模型数据预测研究

Research on data prediction based on smart transportation spatial model

邵洪清 1高剑峰 2杜宇3

作者信息

  • 1. 茂名职业技术学院,广东 茂名 525000
  • 2. 茂名市交通设计院有限公司,广东 茂名 525000
  • 3. 中铁十四局集团有限公司,山东 日照 276800
  • 折叠

摘要

Abstract

Smart traffic monitoring systems can monitor road network operations in real-time and respond quickly to sudden road events,but they have limitations in traffic flow prediction.To address this,this study uses the bat algorithm(BA)to optimize the hyperparameters of the long short-term memory network(LSTM),constructing a traffic flow prediction model based on improved LSTM.Experimental results show that the improved model has a lower mean absolute error(MAE)of 22.54 and a lower root mean square error(RMSE)of 35.16 compared to the traditional LSTM model.The application of this model can enhance traffic flow prediction accuracy and provide a technical basis for decision-making support in smart traffic systems.

关键词

智慧交通/数据预测/交通流量/长短期记忆网络

Key words

intelligent transportation/data prediction/traffic flow/long short term memory network

分类

交通工程

引用本文复制引用

邵洪清,高剑峰,杜宇..基于智慧交通空间模型数据预测研究[J].智能城市,2025,11(3):34-36,3.

基金项目

2024年度茂名市哲学社会科学规划共建项目(2024GJ12) (2024GJ12)

2024年度广东省教育厅普通高校认定类科研项目(2024KTSCX273) (2024KTSCX273)

智能城市

2096-1936

访问量0
|
下载量0
段落导航相关论文