| 注册
首页|期刊导航|湖南工业大学学报|基于多尺度图对比学习的空间转录组聚类方法

基于多尺度图对比学习的空间转录组聚类方法

阳龙 彭利红 周立前

湖南工业大学学报2025,Vol.39Issue(5):52-57,6.
湖南工业大学学报2025,Vol.39Issue(5):52-57,6.DOI:10.3969/j.issn.1673-9833.2025.05.008

基于多尺度图对比学习的空间转录组聚类方法

A Spatial Transcriptome Clustering Method Based on Multi-Scale Map Contrast Learning

阳龙 1彭利红 1周立前1

作者信息

  • 1. 湖南工业大学 计算机学院,湖南 株洲 412007
  • 折叠

摘要

Abstract

In view of the flaw of discontinuous or intersecting spatial domains identified by graph neural networks in the clustering process of spatial transcriptome data,a spatial transcriptome clustering method mcmlST,which is based on multi-scale graph contrastive learning,has thus been proposed.Firstly,the spatial transcriptome data is preprocessed by using SCANPY and principal component analysis,followed by an enhancement of the ST data to form a new view.Next,based on graph autoencoders and auxiliary autoencoders,a dual encoding structure is designed to learn the embedded features of spatial transcriptome data.Finally,the k-means algorithm is used for an identification of spatial domains in spatial transcriptome data on the basis of embedded features.On three classic spatial transcriptome datasets(right dorso lateral prefrontal cortex,human breast cancer Block A Section 1 and STARmap),the proposed method calculates higher ARI and NMI compared with the three baseline methods conST,CCST,and DeepST,indicating a superior spatial transcriptome clustering performance.

关键词

多尺度学习/多头注意力/对比图聚类/深度学习

Key words

multi-scale learning/multi-head attention/contrast graph clustering/deep learning

分类

计算机与自动化

引用本文复制引用

阳龙,彭利红,周立前..基于多尺度图对比学习的空间转录组聚类方法[J].湖南工业大学学报,2025,39(5):52-57,6.

基金项目

国家自然科学基金资助项目(62072172) (62072172)

湖南工业大学学报

1673-9833

访问量0
|
下载量0
段落导航相关论文