| 注册
首页|期刊导航|制冷学报|基于关键特征的制冷剂泄漏故障软测量研究

基于关键特征的制冷剂泄漏故障软测量研究

凌敏彬 杨钰婷 韩华 徐玲 崔晓钰

制冷学报2025,Vol.46Issue(2):145-154,10.
制冷学报2025,Vol.46Issue(2):145-154,10.DOI:10.12465/j.issn.0253-4339.2025.02.145

基于关键特征的制冷剂泄漏故障软测量研究

Soft Measurement of Refrigerant Leakage Based on Key Features

凌敏彬 1杨钰婷 1韩华 1徐玲 2崔晓钰1

作者信息

  • 1. 上海理工大学能源与动力工程学院 上海 200093
  • 2. 开利空调冷冻研发管理(上海)有限公司 上海 200436
  • 折叠

摘要

Abstract

Refrigerant leakage is a frequent and costly fault that deteriorates the normal operation of a chiller;however,it is difficult to measure directly.This study proposes a data mining-and key-feature-based approach for the soft measurement of refrigerant leakage.Random forest importance ranking and distance correlation coefficients were used to select the characteristic features,and a support vector regression(SVR)soft measurement model was established to measure leakage quantitatively.The proposed model was validated through a leakage experiment conducted on a screw chiller with a rated cooling capacity of 1 440 kW and a refrigerant charge of 330 kg.The results showed that the SVR soft measurement model established on the three selected key features achieved significantly improved performance.The model had a root mean square error(RMSE)of 0.844 kg and a mean absolute error(MAE)of 0.734 kg,outperforming the other three feature subsets.

关键词

制冷剂泄漏/特征选择/软测量/随机森林/支持向量回归

Key words

refrigerant leakage/feature selection/soft measurements/random forest/support vector regression

分类

通用工业技术

引用本文复制引用

凌敏彬,杨钰婷,韩华,徐玲,崔晓钰..基于关键特征的制冷剂泄漏故障软测量研究[J].制冷学报,2025,46(2):145-154,10.

基金项目

国家自然科学基金(51506125)资助项目.(The project was supported by the National Natural Science Foundation of China(No.51506125).) (51506125)

制冷学报

OA北大核心

0253-4339

访问量0
|
下载量0
段落导航相关论文