| 注册
首页|期刊导航|长沙理工大学学报(自然科学版)|基于轻量级SGG-YOLOv8n的X-DR电缆开关故障诊断

基于轻量级SGG-YOLOv8n的X-DR电缆开关故障诊断

秦学 李爱平 王长河 樊军 程宏波 朱建勇 刘金平

长沙理工大学学报(自然科学版)2025,Vol.22Issue(2):120-131,12.
长沙理工大学学报(自然科学版)2025,Vol.22Issue(2):120-131,12.DOI:10.19951/j.cnki.1672-9331.20241103001

基于轻量级SGG-YOLOv8n的X-DR电缆开关故障诊断

Fault diagnosis of X-DR cable switch based on lightweight SGG-YOLOv8n

秦学 1李爱平 1王长河 1樊军 2程宏波 2朱建勇 2刘金平3

作者信息

  • 1. 中铁二十四局集团上海电务电化有限公司,上海 200040
  • 2. 华东交通大学 电气与自动化工程学院,江西 南昌 330013
  • 3. 湖南师范大学 信息科学与工程学院,湖南 长沙 410081
  • 折叠

摘要

Abstract

[Purposes]In view of problems such as complex model and low detection efficiency in cable switch image detection algorithm,this paper explored an improved lightweight YOLOv8n model based on the global attention mechanism(GAM)and ghost convolution(GhostConv),namely SGG-YOLOv8n,so as to achieve rapid and accurate diagnosis of cable switch faults in X-ray digital radiography(X-DR).[Methods]Based on the YOLOv8n model,spatial and channel reconstruction convolution(SCConv)was introduced into the backbone network and neck network and replaced the Bottleneck of the C2f module,so as to make the model's receptive field more flexible and improve the detection efficiency and performance of the model.At the same time,GhostConv was introduced into the neck network of the YOLOv8n model to replace the original Conv module,reducing the amount of model computation and number of parameters and ensuring a lightweight model.Moreover,GAM was introduced in front of the detection head to enhance the model's ability to perceive the global feature information.[Findings]Experiments on the X-DR cable switch image dataset show that compared with YOLOv8n,the SGG-YOLOv8n model proposed in this paper reduces the number of parameters by 0.39×106,decreases the floating-point operations per second by 0.9,and improves the precision and recall rate by 1.4 percentage points.In addition,the model raises the mean average precision at the intersection over union(IoU)thresholds of 0.5 and 0.5-0.95 by 1.7 percentage points and 1.2 percentage points,respectively.The model processing speed reaches 65 frames per second.[Conclusions]The proposed method has been applied to the fault diagnosis of the X-DR cable switch,and the fault diagnosis rate for cable switches has been improved from 87.9%to 91.4%after the SGG-YOLOv8n model is applied.

关键词

电缆开关/X射线数字成像/YOLOv8n/空间与通道重建卷积/幻影卷积/注意力机制

Key words

cable switch/X-ray digital radiography/YOLOv8n/spatial and channel reconstruction convolution/ghost convolution/attention mechanism

分类

动力与电气工程

引用本文复制引用

秦学,李爱平,王长河,樊军,程宏波,朱建勇,刘金平..基于轻量级SGG-YOLOv8n的X-DR电缆开关故障诊断[J].长沙理工大学学报(自然科学版),2025,22(2):120-131,12.

基金项目

国家自然科学基金资助项目(62363010) (62363010)

江西省主要学科学术带头人培养项目(20232BCJ22004) Project(62363010)supported by the National Natural Science Foundation of China (20232BCJ22004)

Project of Cultivating Academic Leaders in Key Disciplines of Jiangxi Province(20232BCJ22004) (20232BCJ22004)

长沙理工大学学报(自然科学版)

1672-9331

访问量0
|
下载量0
段落导航相关论文