| 注册
首页|期刊导航|福建师范大学学报(自然科学版)|一种基于特征融合的轻量级姿态估计算法

一种基于特征融合的轻量级姿态估计算法

张伟杰 叶锋 李昊珑

福建师范大学学报(自然科学版)2025,Vol.41Issue(3):19-26,8.
福建师范大学学报(自然科学版)2025,Vol.41Issue(3):19-26,8.DOI:10.12046/j.issn.1000-5277.2024010029

一种基于特征融合的轻量级姿态估计算法

A Lightweight Pose Estimation Algorithm Based on Feature Fusion

张伟杰 1叶锋 1李昊珑2

作者信息

  • 1. 福建师范大学计算机与网络空间安全学院,福建 福州 350117
  • 2. 福州大学计算机与大数据学院,福建 福州 350116
  • 折叠

摘要

Abstract

In human pose estimation tasks,most existing studies primarily focus on the accu-racy of models while overlooking efficiency-related factors such as model size,parameter count,and inference time.However,these metrics are crucial for practical applications.To address this is-sue,this paper proposes a lightweight human pose estimation algorithm based on the YOLOv8-pose algorithm.The algorithm incorporates a cross-scale feature fusion module(CCFM)to enhance the model's adaptability to scale variations and its detection capability for small-scale objects.By effec-tively combining detailed features and contextual information,the model's overall performance is im-proved,and its parameter count is reduced.Additionally,SENetV2 is used to replace the convolu-tional structure in the C2f module of YOLOv8-pose,strengthening the model's global consideration and improving its prediction accuracy.The adoption of the MPDIoU loss function further improves the model's calculation of bounding box errors during training,thereby boosting inference accuracy.The proposed approach achieves a 1.3%improvement in mAP50∶95 compared to the original model.

关键词

姿态估计/YOLOv8/轻量化/特征融合

Key words

pose estimation/YOLOv8/lightweight/feature fusion

分类

计算机与自动化

引用本文复制引用

张伟杰,叶锋,李昊珑..一种基于特征融合的轻量级姿态估计算法[J].福建师范大学学报(自然科学版),2025,41(3):19-26,8.

基金项目

福建省科技创新战略研究联合计划项目(2023R0156) (2023R0156)

福建师范大学学报(自然科学版)

OA北大核心

1000-5277

访问量0
|
下载量0
段落导航相关论文