| 注册
首页|期刊导航|电力需求侧管理|基于CNN-Attention-BiLSTM的碳化硅企业负荷预测与可调节潜力分析

基于CNN-Attention-BiLSTM的碳化硅企业负荷预测与可调节潜力分析

任明远 马国瀚 唐聪 曹万雄 孟涛 杨彤

电力需求侧管理2025,Vol.27Issue(3):38-43,6.
电力需求侧管理2025,Vol.27Issue(3):38-43,6.DOI:10.3969/j.issn.1009-1831.2025.03.006

基于CNN-Attention-BiLSTM的碳化硅企业负荷预测与可调节潜力分析

Load forecasting and adjustable potential analysis of silicon carbide enterprises based on CNN-Attention-BiLSTM

任明远 1马国瀚 2唐聪 2曹万雄 2孟涛 2杨彤2

作者信息

  • 1. 国网甘肃省电力公司,兰州 730000
  • 2. 国网甘肃省电力公司 兰州供电公司,兰州 730030
  • 折叠

摘要

Abstract

Industrial load accounts for a large proportion of social electricity consumption,and the adjustable load resources are abundant,so it is imperative to analyze its adjustable potential.Due to the large change rate of industrial load and many load tips,it is difficult to pre-dict the adjustable potential in real time.Therefore,the silicon carbide industry of a typical industrial enterprise is selected to establish an adjustable potential deduction model.First,the impact of weather characteristics and electricity price factors on the enterprise load is con-sidered through the Person correlation analysis method.At the same time,the Bi-directional long short-term memory(BiLSTM)prediction model processed by convolutional neural network(CNN)and Attention mechanism is established.The adjustable potential of silicon car-bide enterprises is explored by using the model prediction results.In order to verify the effectiveness of this method,this algorithm is signif-icantly superior to other comparison algorithms by establishing different algorithms for comparison and the tunable potential results under different strategies.Meanwhile,the tunable potential results of the three strategies can deepen the power grid's understanding of the load characteristics of such enterprises.

关键词

负荷预测/可调节潜力/碳化硅企业/注意力机制/卷积神经网络/双向长短期记忆网络

Key words

load forecasting/adjustable potential/silicon carbide enterprises/Attention mechanism/convolutional neural network/Bi-di-rectional long short-term memory

分类

动力与电气工程

引用本文复制引用

任明远,马国瀚,唐聪,曹万雄,孟涛,杨彤..基于CNN-Attention-BiLSTM的碳化硅企业负荷预测与可调节潜力分析[J].电力需求侧管理,2025,27(3):38-43,6.

基金项目

国家重点研发计划资助项目(NO.2021YFB2401200) (NO.2021YFB2401200)

电力需求侧管理

1009-1831

访问量0
|
下载量0
段落导航相关论文