| 注册
首页|期刊导航|电力需求侧管理|基于SEResNet-BiLSTM网络的综合能源负荷预测方法

基于SEResNet-BiLSTM网络的综合能源负荷预测方法

宋峥峥 辛锐 赵黎媛 王经书 张鹏飞 李士林

电力需求侧管理2025,Vol.27Issue(3):58-64,7.
电力需求侧管理2025,Vol.27Issue(3):58-64,7.DOI:10.3969/j.issn.1009-1831.2025.03.009

基于SEResNet-BiLSTM网络的综合能源负荷预测方法

Integrated energy system load forecasting based on SEResNet-BiLSTM network

宋峥峥 1辛锐 1赵黎媛 2王经书 3张鹏飞 1李士林4

作者信息

  • 1. 国网河北省电力有限公司 信息通信分公司,石家庄 050000
  • 2. 电工装备可靠性与智能化国家重点实验室(河北工业大学),天津 300401
  • 3. 河北工业大学 人工智能与数据科学学院,天津 300401
  • 4. 国网河北省电力有限公司,石家庄 050000
  • 折叠

摘要

Abstract

Accurate prediction of multi-energy load is crucial for the optimal scheduling and economic operation of integrated energy sys-tems(IES).Aiming at the strong randomness of regional IES and the coupling relationship between multi-energy sources,a multi-task short-term load prediction model based on SEResNet-BiLSTM network and attention mechanism is proposed.Firstly,the model of squeeze-and-excitation networks-residual network(SEResNet)is used as the high-dimensional feature extraction unit to mine the coupling relation-ship between multiple energy sources.The high-dimensional feature extraction of multi-energy load data is realized.Then,bidirectional long short-term memory(BiLSTM)network is used to capture the time series characteristics between data to realize the prediction of load data.Multi-task load learning is realized by hard weight sharing to realize multivariate load forecasting.Finally,the effectiveness of pro-posed method is verified by simulation experiments,and the accuracy of the proposed method is significantly improved compared with oth-er models.

关键词

综合能源系统/多能源负荷预测/残差网络/双向长短期记忆网络/多任务学习

Key words

integrated energy system/multi-energy load forecasting/residual network/bidirectional long short-term memory network/multi-task learning

分类

动力与电气工程

引用本文复制引用

宋峥峥,辛锐,赵黎媛,王经书,张鹏飞,李士林..基于SEResNet-BiLSTM网络的综合能源负荷预测方法[J].电力需求侧管理,2025,27(3):58-64,7.

基金项目

天津市自然科学基金项目(23JCQNJC01060) (23JCQNJC01060)

天津市教委科研计划项目(2022KJ088) (2022KJ088)

电力需求侧管理

1009-1831

访问量0
|
下载量0
段落导航相关论文