| 注册
首页|期刊导航|锅炉技术|基于DF-AdaboostSVM模型的脱硝入口氮氧化物浓度预测研究

基于DF-AdaboostSVM模型的脱硝入口氮氧化物浓度预测研究

马立增 张玲 谷宇 吴俣 唐媛媛 汤光华

锅炉技术2025,Vol.56Issue(2):31-37,7.
锅炉技术2025,Vol.56Issue(2):31-37,7.

基于DF-AdaboostSVM模型的脱硝入口氮氧化物浓度预测研究

Research on Prediction of Nitrogen Oxide Concentration at the Denitration Inlet Based on DF-AdaboostSVM Model

马立增 1张玲 1谷宇 1吴俣 2唐媛媛 2汤光华2

作者信息

  • 1. 国能蚌埠发电有限公司,安徽 蚌埠 233411
  • 2. 南京国电环保科技有限公司,江苏南京 210061
  • 折叠

摘要

Abstract

The traditional coal-fired power unit denitrification system lacks precision in am-monia injection,resulting in excessive ammonia injection,excessive nitrogen oxide emissions,and inability to automatically inject ammonia.To solve these problems,it is nec-essary to achieve precise control of the total amount of ammonia injection and balanced pro-portion of ammonia nitrogen in the denitrification reactor space.This paper proposes a nitro-gen oxide concentration prediction model based on Dominant Factor(DF)and Adaboost inte-grated Support Vector Machine(SVM)to address the issue of inaccurate control of total am-monia injection due to the lag of nitrogen oxide concentration detection at the inlet of the denitrification system reactor.Firstly,through DF analysis of the historical operating data of a 660MW coal-fired power unit,select the auxiliary characteristic parameters that have a sig-nificant impact on the nitrogen oxide concentration at the denitrification inlet and determine the lag time of the selected parameters relative to the nitrogen oxide concentration.Then,based on the lag time reconstruction dataset,a DF-AdaboostSVM nitrogen oxide concentration prediction model is constructed.The research results indicate that compared to modeling with a limited single lag time of 180 s,240 s,and 300 s,as well as a single SVM model,building an integrated model using DF lag time reconstruction dataset has better pre-diction accuracy,with an average percentage error of 4.03%,root mean square error of 16.74,and R2 of 0.91,all of which are superior to the other models mentioned above.From this,it can be seen that the proposed algorithm and model are more suitable for predicting the nitrogen oxide concentration at the denitrification inlet.

关键词

主导因素/Adaboost集成/迟滞时间/氮氧化物浓度/预测模型

Key words

dominant factor/Adaboost integration/lag time/nitrogen oxide concentra-tion/prediction model

分类

环境科学

引用本文复制引用

马立增,张玲,谷宇,吴俣,唐媛媛,汤光华..基于DF-AdaboostSVM模型的脱硝入口氮氧化物浓度预测研究[J].锅炉技术,2025,56(2):31-37,7.

锅炉技术

OA北大核心

1672-4763

访问量0
|
下载量0
段落导航相关论文