| 注册
首页|期刊导航|广东工业大学学报|基于多尺度卷积和注意力机制的病理图像分割网络

基于多尺度卷积和注意力机制的病理图像分割网络

曾安 赖峻浩 杨宝瑶 潘丹

广东工业大学学报2025,Vol.42Issue(2):1-10,10.
广东工业大学学报2025,Vol.42Issue(2):1-10,10.

基于多尺度卷积和注意力机制的病理图像分割网络

Pathology Image Segmentation Network Based on Multiscale Convolution and Attention Mechanism

曾安 1赖峻浩 1杨宝瑶 1潘丹2

作者信息

  • 1. 广东工业大学 计算机学院,广东 广州 510006
  • 2. 广东技术师范大学 电子与信息学院,广东 广州 510665
  • 折叠

摘要

Abstract

Deep learning plays an essential role in the segmentation of pathological images.However,most existing deep learning methods still face challenges such as poor segmentation performance and generalization ability on multi-scale pathological image segmentation tasks.To address these issues,we propose a pathological image segmentation network based on multi-scale convolution and attention mechanisms.We design a multi-scale convolution attention module to extract different scales of features and spatially capture global contextual correlation information,effectively filtering redundant noise information and improving the network's generalization ability in handling multi-scale pathological image data.Additionally,we design a multi-scale feature fusion module to integrate features from different scales,enhancing the edge and fine-grained information in the feature maps and improving segmentation results.The experiments were performed on the GlaS,MoNuSeg and Lizard datasets,and the experimental results show that the Dice scores of the proposed method were 91.07%、81.00%and 79.87%,respectively,and the IoU scores were 84.13%、68.22%and 67.26%,respectively.This demonstrates that the proposed method can effectively segment pathology image,improve the segmentation accuracy,and provide a reliable basis for clinical diagnosis.

关键词

病理图像分割/UNet/多尺度/注意力机制

Key words

pathology image segmentation/UNet/multiscale/attention mechanism

分类

计算机与自动化

引用本文复制引用

曾安,赖峻浩,杨宝瑶,潘丹..基于多尺度卷积和注意力机制的病理图像分割网络[J].广东工业大学学报,2025,42(2):1-10,10.

基金项目

国家自然科学基金资助项目(61976058,92267107) (61976058,92267107)

广东省重点领域研发计划项目(2021B0101220006) (2021B0101220006)

广东省科技计划项目(2019A050510041) (2019A050510041)

广东省自然科学基金资助项目(2021A1515012300) (2021A1515012300)

广州市科技计划项目(202103000034,202002020090) (202103000034,202002020090)

广东工业大学学报

1007-7162

访问量0
|
下载量0
段落导航相关论文