| 注册
首页|期刊导航|高压电器|绿色数字技术赋能电网基建质量检测的实现方法

绿色数字技术赋能电网基建质量检测的实现方法

陈然 柯方超 赵爽 贺兰菲 许琪林 许小薇 张佳恒

高压电器2025,Vol.61Issue(5):111-120,10.
高压电器2025,Vol.61Issue(5):111-120,10.DOI:10.13296/j.1001-1609.hva.2025.05.012

绿色数字技术赋能电网基建质量检测的实现方法

Implementation Method of Green Digital Technology Enabling Quality Inspection of Power Grid Infrastructure

陈然 1柯方超 1赵爽 1贺兰菲 1许琪林 2许小薇 3张佳恒4

作者信息

  • 1. 国网湖北省电力有限公司经济技术研究院,武汉 430077
  • 2. 重庆大学,重庆 400044
  • 3. 湖北科能电力电子有限公司,武汉 430073
  • 4. 三峡大学电气与新能源学院,湖北 宜昌 443002
  • 折叠

摘要

Abstract

In the context of high-quality development,green digital technology,including artificial intelligence tech-nology,plays an important role in promoting the development of quality inspection of power grid infrastructure.In the current power grid infrastructure construction process,the security and intelligence of quality inspection has been made realized.However,such problems such as false detection,missed detection and low detection efficiency are in-evitably existed.To this end,a kind of intelligent detection method for power grid infrastructure quality based on CBAM-ASFF-YOLOv4 is proposed.Firstly,this method introduces adaptively spatial feature fusion(ASFF)into the neck network structure of the YOLOv4 algorithm to improve the original PANet and solves the problem of variable tar-get scales by optimizing feature fusion.Then,by adding a convolutional block attention module(CBAM)after each feature layer,the feature extraction capability of the backbone network for small targets of power grid infrastructure quality detection is effectively enhanced.Finally,the dynamic weight determination method is adopted to reduce the loss ratio of accurate detection results.The simulation results of the example show that the average detection accura-cy and detection speed of the quality intelligent detection method proposed in this paper reach 92.81%and 41.16 fps respectively.Compared with SSD,Faster-RCNN and YOLOv4,the detection time is shortened and the convergence speed and detection accuracy of the algorithm are improved.The method can be able to output corresponding alarm data and reports while realizing automatic identification of hidden image defects.

关键词

电网基建/智能检测/特征融合/卷积块注意力模块/YOLOv4

Key words

power grid infrastructure/intelligent detection/feature fusion/convolution block attention module/YOLOv4

引用本文复制引用

陈然,柯方超,赵爽,贺兰菲,许琪林,许小薇,张佳恒..绿色数字技术赋能电网基建质量检测的实现方法[J].高压电器,2025,61(5):111-120,10.

基金项目

国家自然科学基金资助项目(52107108).Project Supported by National Natural Science Foundation of China(52107108). (52107108)

高压电器

OA北大核心

1001-1609

访问量0
|
下载量0
段落导航相关论文