| 注册
首页|期刊导航|高压电器|基于留一交叉验证法的支持向量机负荷建模参数辨识方法

基于留一交叉验证法的支持向量机负荷建模参数辨识方法

邢超 王朋林 何鑫 邓灿

高压电器2025,Vol.61Issue(5):150-158,9.
高压电器2025,Vol.61Issue(5):150-158,9.DOI:10.13296/j.1001-1609.hva.2025.05.016

基于留一交叉验证法的支持向量机负荷建模参数辨识方法

Support Vector Machine Load Modeling Parameter Identification Method Based on Leave-one-out Cross Validation Method

邢超 1王朋林 1何鑫 1邓灿1

作者信息

  • 1. 云南电网有限责任公司电力科学研究院,昆明 650217
  • 折叠

摘要

Abstract

Load modeling plays a vital role in the operation and control of power system.It is an important and practi-cal significance to find out an effective and accurate strategy for identifying load modeling parameters.In this paper,the support vector machine(SVM)method is used to model the load of power system.The Gaussian radial basis func-tion is used as the kernel function and the basic structure of the support vector machine model is selected.During the model identification period,the actually measured current,voltage and phase angle data of the PMU are used as input variable and the active and reactive power as output variables.The measurement-based load modeling method uses a leave-one-out cross-validation(LOOCV)optimized load model parameter identification strategy.In the model the SVM is used to set up the load model,which avoids the local minimum problem that plagues the neural network.The relatively considerable model fitting degree is obtained by using the load model parameters optimized by the leave-one-out cross validation method.The optimal comprehensive load model parameters are obtained through LOOCV op-timization method so that the model can better fit the power curve.It is shown through the analysis of the measured modeling parameter identification of the PMU that the SVM load model based on the leave-one-out cross-validation method(LOOCV_SVM)to optimize the parameters proposed in this paper has better performance than the SVM load model based on the particle swarm optimization algorithm(PSO_SVM)to optimize the parameters and the SVM load model based on the bootstrap method(B_SVM)to optimize the parameters.

关键词

电力系统/支持向量机/留一交叉验证法/参数辨识/负荷建模

Key words

electric power system/support vector machine/leave-one-out cross-validation/parameter identifica-tion/load modeling

引用本文复制引用

邢超,王朋林,何鑫,邓灿..基于留一交叉验证法的支持向量机负荷建模参数辨识方法[J].高压电器,2025,61(5):150-158,9.

高压电器

OA北大核心

1001-1609

访问量2
|
下载量0
段落导航相关论文