| 注册
首页|期刊导航|高压电器|基于深度强化学习的机组组合智能求解算法

基于深度强化学习的机组组合智能求解算法

母欢欢 余凌 夏凡 袁业

高压电器2025,Vol.61Issue(5):197-207,11.
高压电器2025,Vol.61Issue(5):197-207,11.DOI:10.13296/j.1001-1609.hva.2025.05.021

基于深度强化学习的机组组合智能求解算法

Intelligent Solution Algorithm for Unit Commitment Based on Deep Reinforcement Learning

母欢欢 1余凌 1夏凡 1袁业1

作者信息

  • 1. 华电(林周)新能源有限公司,拉萨 851600
  • 折叠

摘要

Abstract

With the continuous and deep transformation of energy structure in China,the access of the high propor-tion of volatile new energy makes the existing unit commitment theory unable to suit the development demands of the present market decision-making in the new power system.Therefore,a kind of UC intelligent solution algorithm in combination with the deep reinforcement learning(DRL)technology is proposed.Firstly,the DRL algorithm is intro-duced to model the Markov decision process of UC problem and the corresponding state space,transfer function,ac-tion space and reward function are given.Then,the strategy policy gradient(PG)algorithm is adopted for solution and,on this basis,the Lambda iteration are adopted to solve the output scheme of the unit under the startup and shutdown state respectively.Finally,a DRL-based UC intelligent solution algorithm is proposed.The applicability and effectiveness of this method are verified based on simulation examples.

关键词

安全约束机组组合/马尔科夫决策过程/深度强化学习

Key words

security constrained unit commitment/Markov decision process/deep reinforcement learning

引用本文复制引用

母欢欢,余凌,夏凡,袁业..基于深度强化学习的机组组合智能求解算法[J].高压电器,2025,61(5):197-207,11.

高压电器

OA北大核心

1001-1609

访问量0
|
下载量0
段落导航相关论文