| 注册
首页|期刊导航|计算机工程|基于多智能体深度强化学习的SD-IoT控制器部署

基于多智能体深度强化学习的SD-IoT控制器部署

吕超峰 徐鹏飞 罗迪 刘金平

计算机工程2025,Vol.51Issue(5):83-92,10.
计算机工程2025,Vol.51Issue(5):83-92,10.DOI:10.19678/j.issn.1000-3428.0068958

基于多智能体深度强化学习的SD-IoT控制器部署

SD-IoT Controller Placement Based on Multi-Agent Deep Reinforcement Learning

吕超峰 1徐鹏飞 2罗迪 2刘金平2

作者信息

  • 1. 湖南师范大学信息科学与工程学院,湖南长沙 410081||张家界航空工业职业技术学院,湖南张家界 427000
  • 2. 湖南师范大学信息科学与工程学院,湖南长沙 410081
  • 折叠

摘要

Abstract

The rapid growth of Internet of Things(IoT)traffic has significantly impacted data transmission for devices such as sensors.Software-Defined Networking(SDN)offers a solution to optimize network performance and enhance data transmission quality.However,the dynamic nature of network states,such as traffic fluctuations in IoT environments,poses challenges to the performance of the control plane in SDN.This study addresses the dynamic controller placement problem in Software-Defined IoT(SD-IoT)to ensure consistent control plane performance under changing traffic conditions.The approach considers the energy consumption and data transmission characteristics of IoT nodes when deploying controllers,with a comprehensive evaluation of factors such as delay,control reliability,and energy consumption.The problem is modeled as a Markov game process to capture these dynamics effectively.To optimize both individual controller performance and the overall control plane performance,this study employs multi-agent deep reinforcement learning.During the deployment phase,action masks are utilized to exclude nodes with insufficient performance or limited power supply,ensuring robust and efficient controller placement.Simulation experiments demonstrate that the proposed algorithm identifies high-performance deployment solutions compared with the placement algorithms based on Louvain community division or single agent Deep Q-Network(DQN),achieving superior results in dynamic IoT environments.

关键词

软件定义物联网/控制器部署/多智能体深度强化学习/动作掩码/马尔可夫博弈

Key words

Software-Defined Internet of Things(SD-IoT)/controller placement/multi-agent deep reinforcement learning/action mask/Markov game

分类

计算机与自动化

引用本文复制引用

吕超峰,徐鹏飞,罗迪,刘金平..基于多智能体深度强化学习的SD-IoT控制器部署[J].计算机工程,2025,51(5):83-92,10.

基金项目

湖南省教育厅科学研究项目(23C1042). (23C1042)

计算机工程

OA北大核心

1000-3428

访问量0
|
下载量0
段落导航相关论文