| 注册
首页|期刊导航|军事医学|基于转录组数据和基因本体知识的化合物毒性预测

基于转录组数据和基因本体知识的化合物毒性预测

赵彩芸 何松 金义光 伯晓晨

军事医学2025,Vol.49Issue(3):178-184,7.
军事医学2025,Vol.49Issue(3):178-184,7.DOI:10.7644/j.issn.1674-9960.2025.03.003

基于转录组数据和基因本体知识的化合物毒性预测

Compound toxicity prediction based on transcriptomics data and gene ontology knowledge

赵彩芸 1何松 1金义光 1伯晓晨1

作者信息

  • 1. 军事科学院军事医学研究院,北京 100850
  • 折叠

摘要

Abstract

Objective To develop a new model for predicting compound toxicity and exploring related toxicity mechanisms using transcriptomic data and gene ontology knowledge.Methods Using the TOXRIC database,two toxicity-related datasets were constructed and a Tox VNN model was established that incorporated gene ontology knowledge to evaluate compound toxicity and identify key biological processes.Results Tox VNN demonstrated good predictability.The identification of important biological processes related to CYP enzyme activity and p53 pathway stress response provided insights into the toxicity mechanisms.Conclusion The Tox VNN,which integrates data and knowledge,can not only ensure high predictability,but also effectively identify important biological processes related to toxicity.This model offers a new approach to predicting and understanding compound toxicity in drug safety evaluation.

关键词

化合物毒性预测/CYP酶活性/p53通路应激反应/转录组/基因本体/深度学习

Key words

compound toxicity prediction/CYP enzyme activity/p53 pathway stress response/transcriptome/gene ontology/deep learning

分类

药学

引用本文复制引用

赵彩芸,何松,金义光,伯晓晨..基于转录组数据和基因本体知识的化合物毒性预测[J].军事医学,2025,49(3):178-184,7.

基金项目

国家重点研发计划资助(SQ2024YFA1300245) (SQ2024YFA1300245)

军事医学

1674-9960

访问量2
|
下载量0
段落导航相关论文