| 注册
首页|期刊导航|集成技术|基于聚焦注意力机制的对齐回归手部姿态估计网络

基于聚焦注意力机制的对齐回归手部姿态估计网络

窦铭扬 耿艳娟 杨佳彬

集成技术2025,Vol.14Issue(3):64-77,14.
集成技术2025,Vol.14Issue(3):64-77,14.DOI:10.12146/j.issn.2095-3135.20241030001

基于聚焦注意力机制的对齐回归手部姿态估计网络

Alignment Regression Hand Pose Estimation Network Based on Focused Attention Mechanism

窦铭扬 1耿艳娟 2杨佳彬3

作者信息

  • 1. 中国科学院深圳先进技术研究院 深圳 518055||中国科学院大学 北京 100049
  • 2. 中国科学院深圳先进技术研究院 深圳 518055
  • 3. 中国科学院深圳先进技术研究院 深圳 518055||南方科技大学 深圳 518055
  • 折叠

摘要

Abstract

Hand pose estimation based on RGB images holds wide application prospects in dynamic gesture recognition and human-computer interaction.However,existing methods face challenges such as high hand self-similarity and densely distributed keypoints,making it difficult to achieve high-precision predictions with low computational costs,thereby limiting their performance in complex scenarios.To address these challenges,this paper proposes a 2D hand pose estimation model named FAR-HandNet,based on the YOLOv8 network.The model ingeniously integrates a focused linear attention module,a keypoint alignment strategy,and a regression residual fitting module,effectively enhancing feature capture capabilities for small target regions(e.g.,hands)while mitigating the adverse effects of self-similarity on the localization accuracy of hand keypoints.Additionally,the regression residual fitting module leverages a flow-based generative model to fit the residual distribution of keypoints,significantly improving regression precision.Experiments were conducted on the Carnegie Mellon University panorama dataset(CMU)and the FreiHAND dataset.Results demonstrate that FAR-HandNet exhibits remarkable advantages in parameter size and computational efficiency.Compared to existing methods,it achieves superior performance in the percentage of correct keypoints under varying thresholds.Furthermore,the model achieves an inference time of only 32 ms.Ablation studies further validate the effectiveness of each module,conclusively verifying the efficacy and superiority of FAR-HandNet in hand pose estimation tasks.

关键词

手部姿态估计/注意力机制/回归网络

Key words

hand pose estimation/attention mechanism/regression network

分类

信息技术与安全科学

引用本文复制引用

窦铭扬,耿艳娟,杨佳彬..基于聚焦注意力机制的对齐回归手部姿态估计网络[J].集成技术,2025,14(3):64-77,14.

基金项目

国家自然科学基金项目(62373345) (62373345)

深圳市医学研究专项项目(D2402013) (D2402013)

深圳市基础研究重点项目(JCYJ20220818101602005) This work is supported by National Natural Science Foundation of China(62373345),Shenzhen Medical Research Special Project(D2402013),and Shenzhen Governmental Basic Research Grant(JCYJ20220818101602005) (JCYJ20220818101602005)

集成技术

2095-3135

访问量0
|
下载量0
段落导航相关论文