| 注册
首页|期刊导航|集成技术|基于Transformer编码器的脑血流速度重建模型研究

基于Transformer编码器的脑血流速度重建模型研究

刘高城 童嘉博 杨仕林 王秋颖 唐新宇 刘畅 刘嘉

集成技术2025,Vol.14Issue(3):102-118,17.
集成技术2025,Vol.14Issue(3):102-118,17.DOI:10.12146/j.issn.2095-3135.20250118001

基于Transformer编码器的脑血流速度重建模型研究

Research on A Transformer Encoder-Based Model for Cerebral Blood Flow Velocity Reconstruction

刘高城 1童嘉博 2杨仕林 1王秋颖 1唐新宇 3刘畅 4刘嘉4

作者信息

  • 1. 中国科学院深圳先进技术研究院 深圳 518055||中国科学院大学 北京 100049
  • 2. 澳门科技大学 澳门 999078
  • 3. 中国科学院深圳先进技术研究院 深圳 518055||南方科技大学 深圳 518055
  • 4. 中国科学院深圳先进技术研究院 深圳 518055
  • 折叠

摘要

Abstract

Cerebral blood flow velocity(CBFV)reconstruction plays a crucial role in evaluating cerebrovascular function,particularly in the early diagnosis of cerebrovascular diseases,optimizing treatment plans,and preventing strokes.Existing CBFV reconstruction methods face challenges in accuracy and efficiency when processing multivariate time-series signals,particularly in the context of data scarcity and complex signal processing.This study proposes a multivariate time-series model based on a Transformer encoder,which achieves high-precision CBFV reconstruction using arterial blood pressure and CO2 time-series signals.The model design is based on a long short-term memory module,which effectively compensates for the limitations of the global attention mechanisms in processing local information and enhances local feature learning.Additionally,a hybrid loss function is employed to optimize local waveform errors,improving reconstruction accuracy.Furthermore,to address the issue of data scarcity in the target domain,this study introduces a transfer learning strategy based on the correlation between arterial blood pressure and electrocardiogram signals,alleviating the impact of limited data on model performance.Experimental results demonstrate that the proposed model outperforms traditional regression and deep learning models in the CBFV reconstruction task,with a Pearson correlation coefficient of 0.51870,a dynamic time warping distance of 17.879,and mutual information of 0.34375,while completing the reconstruction of 200 data points in 0.04 s.The study validates the effectiveness of this method in precision medicine and provides innovative solutions for clinical diagnosis,disease prevention,and personalized treatment,with broad application prospects,particularly in medical signal processing,intelligent healthcare,and health monitoring.

关键词

脑血流速度重建/迁移学习/Transformer/长短期记忆网络

Key words

reconstruction of cerebral blood flow velocity/transfer learning/Transformer/long short-term memory

分类

医药卫生

引用本文复制引用

刘高城,童嘉博,杨仕林,王秋颖,唐新宇,刘畅,刘嘉..基于Transformer编码器的脑血流速度重建模型研究[J].集成技术,2025,14(3):102-118,17.

集成技术

2095-3135

访问量0
|
下载量0
段落导航相关论文