| 注册
首页|期刊导航|海洋预报|基于多尺度特征融合和时空注意力LSTM的台风云图预测研究

基于多尺度特征融合和时空注意力LSTM的台风云图预测研究

程勇 钱坤 王军 渠海峰 李伟 杨玲 韩晓东 刘敏

海洋预报2025,Vol.42Issue(2):89-98,10.
海洋预报2025,Vol.42Issue(2):89-98,10.DOI:10.11737/j.issn.1003-0239.2025.02.010

基于多尺度特征融合和时空注意力LSTM的台风云图预测研究

Typhoon cloud image prediction using Multi-Scale Feature Fusion and Spatiotemporal Attention LSTM

程勇 1钱坤 1王军 1渠海峰 1李伟 1杨玲 1韩晓东 2刘敏1

作者信息

  • 1. 南京信息工程大学,江苏 南京 210044
  • 2. 上海交通大学电子信息与电气工程学院,上海 200240
  • 折叠

摘要

Abstract

Existing deep learning methodologies for typhoon prediction overlook the issue of internal feature loss,hindering a comprehensive capture of the intricate structural changes within typhoons.To address this problem,this paper introduces a Multiscale Feature Fusion Spatiotemporal Attention Long Short-Term Memory Network(MSTA-LSTM).Initially,a feature enhancement module is incorporated to strengthen typhoon feature information.Then,the loss of typhoon-specific details is mitigated through skip connections during the encoding and decoding processes.Simultaneously,the Convolutional Block Attention Module within the Spatiotemporal Long Short-Term Memory(ST-LSTM)units is used to optimize information transmission.Finally,decoded outputs from different scales are adjusted through deconvolution and fused to produce the final output.Validation and ablation experiments are conducted using a dataset of typhoon cloud maps obtained by Himawari-8 for the Pacific coastal regions from East Asia to Southeast Asia,which contains a training set of about 16 typhoon processes and a test set of 3 typhoon processes.Compared to other networks,the MSTA-LSTM network demonstrates improvements in the accuracy of typhoon cloud map prediction,with root mean square error,peak signal-to-noise ratio,and structural similarity index metric reaching 42.76,16.38,and 0.481 7,respectively.

关键词

时间序列预测/多尺度特征/时空长短期记忆网络/注意力机制

Key words

time series prediction/multiscale features/Spatiotemporal Long Short-Term Memory/attention mechanism

分类

大气科学

引用本文复制引用

程勇,钱坤,王军,渠海峰,李伟,杨玲,韩晓东,刘敏..基于多尺度特征融合和时空注意力LSTM的台风云图预测研究[J].海洋预报,2025,42(2):89-98,10.

基金项目

国家自然科学基金(41975183、41875184). (41975183、41875184)

海洋预报

OA北大核心

1003-0239

访问量0
|
下载量0
段落导航相关论文