| 注册
首页|期刊导航|河南科技大学学报(自然科学版)|基于多级分层融合网络的步态识别方法

基于多级分层融合网络的步态识别方法

李哲 刘勇 刘中华 欧卫华

河南科技大学学报(自然科学版)2025,Vol.46Issue(2):42-47,94,7.
河南科技大学学报(自然科学版)2025,Vol.46Issue(2):42-47,94,7.DOI:10.15926/j.cnki.issn1672-6871.2025.02.005

基于多级分层融合网络的步态识别方法

Method for Gait Recognition Based on Multi-level Hierarchical Fusion Network

李哲 1刘勇 1刘中华 2欧卫华3

作者信息

  • 1. 河南科技大学信息工程学院,河南洛阳 471023
  • 2. 浙江海洋大学信息工程学院,浙江舟山 316022
  • 3. 贵州师范大学大数据与计算机科学学院,贵州贵阳 550025
  • 折叠

摘要

Abstract

Gait recognition is a biometric technology that identifies individuals through their unique walking patterns.It is suitable for unconstrained environments and has broad application prospects.Although current methods focus on using body part based representations,they often overlook the hierarchical dependencies among local motion patterns.In this paper,we propose a multi-level hierarchical fusion model for extracting gait features from coarse to fine.Our framework integrates two strategies:multi-level hierarchical feature extraction and non-uniform hierarchical feature extraction.This enables fine-grained extraction of local features while emphasizing the interrelationships among local features.Verified by numerous experiments on widely recognized datasets,the method we proposed has been proven to be effective.While improving the model accuracy,this method also successfully maintains a reasonable balance in model complexity.

关键词

局部特征/多级分层/不均匀/特征融合/步态识别

Key words

local features/multi-level hierarchy/non-uniform/feature fusion/gait recognition

分类

信息技术与安全科学

引用本文复制引用

李哲,刘勇,刘中华,欧卫华..基于多级分层融合网络的步态识别方法[J].河南科技大学学报(自然科学版),2025,46(2):42-47,94,7.

基金项目

国家自然科学基金项目(U1504610,61962010,62262005) (U1504610,61962010,62262005)

河南科技大学学报(自然科学版)

OA北大核心

1672-6871

访问量0
|
下载量0
段落导航相关论文