| 注册
首页|期刊导航|河南科技大学学报(自然科学版)|非Lipschitz条件下Lévy噪声扰动的随机比例型微分方程的数值解

非Lipschitz条件下Lévy噪声扰动的随机比例型微分方程的数值解

梁飞 张丽洁

河南科技大学学报(自然科学版)2025,Vol.46Issue(2):95-104,10.
河南科技大学学报(自然科学版)2025,Vol.46Issue(2):95-104,10.DOI:10.15926/j.cnki.issn1672-6871.2025.02.011

非Lipschitz条件下Lévy噪声扰动的随机比例型微分方程的数值解

Numerical Solutions for Stochastic Pantograph Differential Equations with Lévy Noise under Non-Lipschitz Conditions

梁飞 1张丽洁1

作者信息

  • 1. 西安科技大学 理学院,陕西西安 710699
  • 折叠

摘要

Abstract

This paper investigates stochastic pantograph differential equations driven by Lévy noise under non-Lipschitz conditions.Initially,it is established that the exact solution of the equation exists with high probability within a compact set,even under the constraints of non-Lipschitz conditions.Subsequently,the Euler method is utilized to develop a numerical solution,and it is rigorously shown that the numerical solution converges to the exact solution in probability within the mean square framework.Finally,a concrete example is presented to substantiate the validity and efficacy of the theoretical findings.

关键词

随机比例型微分方程/Lévy噪声/非Lipschitz条件/Euler方法/数值解

Key words

stochastic pantograph differential equations/Lévy noise/non-Lipschitz conditions/Euler method/numerical solution

分类

数学

引用本文复制引用

梁飞,张丽洁..非Lipschitz条件下Lévy噪声扰动的随机比例型微分方程的数值解[J].河南科技大学学报(自然科学版),2025,46(2):95-104,10.

基金项目

国家自然科学基金项目(42271309) (42271309)

河南科技大学学报(自然科学版)

OA北大核心

1672-6871

访问量0
|
下载量0
段落导航相关论文