| 注册
首页|期刊导航|计算机应用与软件|融合知识蒸馏与迁移学习的小样本学习方法

融合知识蒸馏与迁移学习的小样本学习方法

黄友文 胡燕芳 魏国庆

计算机应用与软件2025,Vol.42Issue(4):319-325,334,8.
计算机应用与软件2025,Vol.42Issue(4):319-325,334,8.DOI:10.3969/j.issn.1000-386x.2025.04.045

融合知识蒸馏与迁移学习的小样本学习方法

FEW-SHOT LEARNING BASED ON KNOWLEDGE DISTILLATION AND TRANSFER LEARNING

黄友文 1胡燕芳 1魏国庆1

作者信息

  • 1. 江西理工大学信息工程学院 江西赣州 341000
  • 折叠

摘要

Abstract

Aiming at overfitting training data in deep model caused by too few samples,we propose a few-shot learning method that combines knowledge distillation and transfer learning.In order to improve the feature expression ability of shallow network for small sample images,we designed a multi-generation distillation network structure.A modified transfer learning structure was given to enhance the generalization ability of the network by adjusting few parameters.Multiple classifiers were combined to fuse the networks obtained through distillation and transfer.The experiments on three few-shot standard datasets show that the proposed model can effectively improve the classification ability of the model and make the few-shot prediction results more accurate.

关键词

小样本学习/图像分类/知识蒸馏/迁移学习/集成学习

Key words

Few-shot learning/Image classification/Knowledge distillation/Transfer learning/Ensemble learning

分类

信息技术与安全科学

引用本文复制引用

黄友文,胡燕芳,魏国庆..融合知识蒸馏与迁移学习的小样本学习方法[J].计算机应用与软件,2025,42(4):319-325,334,8.

基金项目

江西省教育厅科技项目(GJJ180443). (GJJ180443)

计算机应用与软件

OA北大核心

1000-386X

访问量0
|
下载量0
段落导航相关论文