| 注册
首页|期刊导航|南京航空航天大学学报(英文版)|基于旋翼性能变化的飞机结冰探测方法研究

基于旋翼性能变化的飞机结冰探测方法研究

吴渊 朱东宇 许岭松 于雷

南京航空航天大学学报(英文版)2025,Vol.42Issue(2):212-225,14.
南京航空航天大学学报(英文版)2025,Vol.42Issue(2):212-225,14.DOI:10.16356/j.1005-1120.2025.02.006

基于旋翼性能变化的飞机结冰探测方法研究

An Aircraft Icing Detection Method Based on Performance Data of Rotor

吴渊 1朱东宇 2许岭松 2于雷2

作者信息

  • 1. 中航工业空气动力研究院辽宁省飞行器防除冰重点实验室,沈阳 110034,中国||南京航空航天大学航空学院,南京 210016,中国
  • 2. 中航工业空气动力研究院辽宁省飞行器防除冰重点实验室,沈阳 110034,中国
  • 折叠

摘要

Abstract

Existing icing detection technologies face challenges when applied to small and medium-sized aircraft,especially electric vertical take-off and landing(eVTOL)aircraft that meet the needs of low-altitude economic development.This study proposes a data-driven icing detection method based on rotor performance evolution.Through dry-air baseline tests and dynamic icing comparative experiments(wind speed 0-30 m/s,rotational speed 0-3 000 r/min,collective pitch 0°—8°)of a 0.6 m rotor in the FL-61 icing wind tunnel,a multi-source heterogeneous dataset containing motion parameters,aerodynamic parameters,and icing state identifiers is constructed.An innovative signal processing architecture combining adaptive Kalman filtering and moving average cascading is adopted.And a comparative study is conducted on the performance of support vector machine(SVM),multilayer perceptron(MLP),and random forest(RF)algorithms,achieving real-time identification of icing states in rotating components.Experimental results demonstrate that the method exhibits a minimum detection latency of 6.9 s and 96%overall accuracy in reserved test cases,featuring low-latency and low false-alarm,providing a sensor-free lightweight solution for light/vertical takeoff and landing aircraft.

关键词

旋翼/螺旋桨/飞机结冰/结冰探测/机器学习/支持向量机/多层感知机

Key words

rotor/propeller/aircraft icing/icing detection/machine learning/support vector machine(SVM)/multilayer perceptron(MLP)

引用本文复制引用

吴渊,朱东宇,许岭松,于雷..基于旋翼性能变化的飞机结冰探测方法研究[J].南京航空航天大学学报(英文版),2025,42(2):212-225,14.

基金项目

This work was supported in part by the National Key R&D Program of China(No.2022YFE02-03700),and the Aeronautical Science Foundation of China(No.2023Z010027001).The authors would like to acknowl-edge the following people for their assistance:GUO Jin,LIU Nan,JIANG Xinkai,ZHANG Jinlong,and NIE Xin. (No.2022YFE02-03700)

南京航空航天大学学报(英文版)

1005-1120

访问量0
|
下载量0
段落导航相关论文