| 注册
首页|期刊导航|沈阳大学学报(自然科学版)|基于多策略改进的蜣螂优化算法及其应用

基于多策略改进的蜣螂优化算法及其应用

刘洋 李思 柴海龙

沈阳大学学报(自然科学版)2025,Vol.37Issue(2):134-146,13.
沈阳大学学报(自然科学版)2025,Vol.37Issue(2):134-146,13.

基于多策略改进的蜣螂优化算法及其应用

Optimization Algorithm for Dung Beetle Based on Multi Strategy Improvement and its Application

刘洋 1李思 1柴海龙1

作者信息

  • 1. 沈阳大学信息工程学院,辽宁 沈阳 110044
  • 折叠

摘要

Abstract

A multi strategy improved dung beetle optimization algorithm(SDBO)was proposed to address the issues of insufficient diversity,easy falling into local optima,and slow convergence speed in traditional dung beetle optimization algorithms(DBO).SDBO uses a Tent chaotic map hybrid elite reverse learning strategy to increase the diversity of the initialization population.The golden sine algorithm is introduced to enhance the global exploration and local search performance of the algorithm.The Lévy flight strategy is introduced to avoid the algorithm falling into local optima.Dynamic weight coefficients are used to improve convergence speed of the algorithm.To evaluate the performance of SDBO,12 standard test functions were adopted to test it.Experimental results show that SDBO performs better than other seven heuristic algorithms in terms of overall optimization performance.The SDBO algorithm was applied to two classical constrained engineering design optimization problems,which achieved significant optimization results.

关键词

蜣螂优化算法/混沌映射/莱维飞行/黄金正弦算法/SDBO

Key words

dung beetle optimization algorithm/chaotic mapping/Lévy flight/golden sine algorithm/SDBO

分类

计算机与自动化

引用本文复制引用

刘洋,李思,柴海龙..基于多策略改进的蜣螂优化算法及其应用[J].沈阳大学学报(自然科学版),2025,37(2):134-146,13.

基金项目

2023年辽宁省"揭榜挂帅"科技计划项目(技术攻关类)(2023JH1/10400099). (技术攻关类)

沈阳大学学报(自然科学版)

2095-5456

访问量0
|
下载量0
段落导航相关论文