| 注册
首页|期刊导航|四川轻化工大学学报(自然科学版)|基于KPCA-ISOA-KELM的冷缝检测分类研究

基于KPCA-ISOA-KELM的冷缝检测分类研究

朱洪谷 吴佳晔

四川轻化工大学学报(自然科学版)2025,Vol.38Issue(2):91-99,9.
四川轻化工大学学报(自然科学版)2025,Vol.38Issue(2):91-99,9.DOI:10.11863/j.suse.2025.02.11

基于KPCA-ISOA-KELM的冷缝检测分类研究

Research on Cold Joint Detection and Classification Based on KPCA-ISOA-KELM

朱洪谷 1吴佳晔2

作者信息

  • 1. 四川轻化工大学 自动化与信息工程学院,四川 宜宾 644000
  • 2. 西南石油大学 机电工程学院,成都 610500||四川升拓检测技术股份有限公司,四川 自贡 643030
  • 折叠

摘要

Abstract

The cold joint detection classification method,named KPCA-ISOA-KELM,is proposed to address several existing issues in current cold joint detection techniques,such as low detection efficiency,high data parsing requirements,and limited exploitation of waveform information,which combines Kernel Principal Component Analysis(KPCA),Improved Seagull Optimization Algorithm(ISOA),and Kernel Extreme Learning Machine(KELM).Firstly,data sets are collected using the impact elastic wave method in suspected cold joint areas within tunnels,and KPCA is utilized to perform dimensionality reduction on the data.Then,ISOA is employed to optimize the parameters of KELM.Finally,the optimized KELM classifier is utilized to classify the detection data.Comparative validation is conducted against KPCA-SOA-KELM,KPCA-FOA-KELM,and KPCA-CNN-LSTM models.The results indicate that the KPCA-ISOA-KELM model provides valuable guidance for on-site detection and achieves a higher accuracy rate of 96.00%and a weighted F1-score of 0.9598 compared to the other three models.

关键词

冷缝/冲击弹性波/核主成分分析/改进海鸥优化算法/核极限学习机/数据分类

Key words

cold joint/impact elastic wave/kernel principal component analysis/improved seagull optimization algorithm/kernel extreme learning machine/data classification

分类

交通工程

引用本文复制引用

朱洪谷,吴佳晔..基于KPCA-ISOA-KELM的冷缝检测分类研究[J].四川轻化工大学学报(自然科学版),2025,38(2):91-99,9.

基金项目

四川省科技成果转移转化示范项目(2023ZHCG0020) (2023ZHCG0020)

四川轻化工大学学报(自然科学版)

2096-7543

访问量0
|
下载量0
段落导航相关论文