基于全局鲁棒Retinex模型的多通道弱光图像增强OA北大核心
Multi-channel low-light image enhancement method based on global robust Retinex model
针对现有增强光照方法忽略不同光照下色相和饱和度的变化,且在抑制噪声的同时丢失过多细节信息的问题,基于Retinex理论提出一种在所有色彩通道上增强光照的全局鲁棒Retinex模型(global robust Retinex model,GRM).采用收缩映射实现分数阶范数,使分解出的照明图更平滑;针对反射图梯度,采用基于输入图像信息计算得到的权重矩阵和正则项来获取噪声少、细节多的反射图;选择交替方向乘子法对模型进行求解,并通过伽玛校正获取理想照明图;将处理后的反射图与照明图合并得到最终结果.在Adobe FiveK、DICM、VV和LIME数据集上的实验结果表明,GRM不仅在峰值信噪比、结构相似度、图像质量评估指标等方面可以与鲁棒Retinex模型、低秩正则化Retinex模型和即插即用Retinex模型等方法相媲美,而且降噪能力更强,图像光照恢复更明显.GRM为弱光照环境下拍摄到的含噪声图像的增强处理提供了更优的解决方案.
In response to the issues where existing illumination enhancement methods ignore the changes in hue and saturation under different lighting conditions,resulting in the loss of excessive detail information while suppressing noise,we propose a global robust Retinex model(GRM)based on the Retinex theory to enhance illumination across all color channels.A contraction mapping is used to implement fractional-order norms,making the decomposed illumination map smoother.For the reflection map gradient,we employ a weight matrix and regularization term calculated based on the input image information to obtain a reflection map with less noise and more details.The alternating direction method of multipliers is chosen to solve the model,and gamma correction is applied to obtain the ideal illumination map.The processed reflection map is then combined with the illumination map to yield the final result.Experimental results on the Adobe FiveK,DICM,VV,and LIME datasets show that GRM not only competes with methods such as the robust Retinex model,low-rank regularization Retinex model,and plug-and-play Retinex model in terms of peak signal-to-noise ratio,structural similarity,and image quality assessment metrics,but also demonstrates stronger denoising capabilities and more significant image lighting recovery.The GRM model provides a superior solution for enhancing noisy images captured in low-light environments.
吴翰宁;易积政;李潇瑶;李思佳
中南林业科技大学电子信息与物理学院,湖南 长沙 410004中南林业科技大学前沿交叉学科学院,湖南 长沙 410004中南林业科技大学前沿交叉学科学院,湖南 长沙 410004中南林业科技大学前沿交叉学科学院,湖南 长沙 410004
计算机与自动化
计算机图像弱光图像增强Retinex模型交替方向乘子法分数阶范数图像降噪
computer imagelow-light image enhancementRetinex modelalternating direction method of multipliersfractional-order normimage denoising
《深圳大学学报(理工版)》 2025 (3)
326-333,8
Hunan Provincial Graduate Research Innovation Project(CX20240692)Graduate Research Innovation Fund Project of Central South University of Forestry and Technology(2023CX02091) 湖南省研究生科研创新资助项目(CX20240692)中南林业科技大学研究生科研创新基金资助项目(2023CX02091)
评论