融合关系路径和上下文的归纳关系预测模型OA北大核心
Inductive relationship prediction model fusing relationship path and context
针对现有的归纳关系预测方法中大多只考虑实体之间的关系路径,未考虑关系上下文包含的头尾实体的性质,提出一种融合关系路径和关系上下文的归纳关系预测(inductive relation prediction fusing relation path and context,IRP-RPC)模型,将关系上下文作为关系路径的补充来进行归纳关系预测.该方法仅依赖于关系语义信息,因此能够自然地推广到完全归纳的设置.先使用随机行走寻径策略获取关系路径和关系上下文,再设计并实现一个层次化的融合了门控网络的Transformer架构来统一聚合关系路径和关系上下文,以捕获实体之间的联系和实体的内在属性,并采用这些组件的自适应加权组合来做出最终预测.在公开的FB15K-237和NELL-995的8个版本归纳数据集上进行实验,与9个基线模型相比,IRP-RPC模型在精确率-召回率曲线下的面积(area under the precision-recall curve,AUC-PR)和hits@10指标上均取得了优异的性能,验证了其有效性和可推广性.研究表明,IRP-RPC模型通过融合关系路径和关系上下文,能够更全面地建模实体间的语义联系与结构信息,在解决传统归纳关系预测方法中路径信息与上下文信息利用不足的问题上具有显著优势.
The existing inductive relation prediction methods primarily focus on the relation paths between the different entities,often neglecting the properties of head and tail entities in relation context.To address this,we propose an inductive relation prediction model fusing relation paths and context(IRP-RPC),which incorporates the relation context as a complement to the relation path for inductive relation prediction.This model relies solely on relation semantics,enabling it to naturally generalize to fully inductive settings.First,we use a random walk-based pathfinding strategy to obtain relation paths and relation contexts.Then,we design and implement a hierarchical Transformer architecture,enhanced with a gated network,to unify and aggregate the relation paths and contexts,capturing both the relations between entities and the intrinsic attributes of entities.An adaptive weighted combination of these components is used to make the final prediction.Experiments on eight versions of inductive datasets from FB15K-237 and NELL-995 demonstrate that IRP-RPC model outperforms nine baseline models in terms of area under the precision-recall curve(AUC-PR)and hits@10 metrics,validating its effectiveness and scalability.The experimental results show that by fusing relation paths and relation contexts,the IRP-RPC model can more comprehensively capture the semantic relationships and structural information between entities,offering a significant advantage over traditional inductive methods,which suffer from under-utilization of path and context information.
刘雪洋;李卫军;丁建平;刘世侠;王子怡;苏易礌
北方民族大学计算机科学与工程学院,宁夏 银川 750021北方民族大学计算机科学与工程学院,宁夏 银川 750021||%形%&智能处理国家民委重点实验室,宁夏 银川 750021北方民族大学计算机科学与工程学院,宁夏 银川 750021北方民族大学计算机科学与工程学院,宁夏 银川 750021北方民族大学计算机科学与工程学院,宁夏 银川 750021北方民族大学计算机科学与工程学院,宁夏 银川 750021
计算机与自动化
人工智能知识工程知识图谱归纳关系预测Transformer门控网络关系路径关系上下文
artificial intelligenceknowledge engineeringknowledge graphinductive relation predictionTransformergated networkrelation pathrelation context
《深圳大学学报(理工版)》 2025 (3)
342-350,9
National Natural Science Foundation of China(62066038,61962001)Graduate Innovation Project of North Minzu University(YCX24127) 国家自然科学基金资助项目(62066038,61962001)北方民族大学研究生创新资助项目(YCX24127)
评论