| 注册
首页|期刊导航|森林工程|基于图神经网络的林分空间结构优化

基于图神经网络的林分空间结构优化

张雨晨 董希斌 张甜 郭奔 张佳旺 滕弛 宋梓恺

森林工程2025,Vol.41Issue(3):451-461,11.
森林工程2025,Vol.41Issue(3):451-461,11.DOI:10.7525/j.issn.1006-8023.2025.03.002

基于图神经网络的林分空间结构优化

Stand Spatial Structure Optimization Using Graph Neural Networks

张雨晨 1董希斌 1张甜 2郭奔 1张佳旺 1滕弛 1宋梓恺1

作者信息

  • 1. 森林持续经营与环境微生物工程黑龙江省重点实验室(东北林业大学),哈尔滨,150040
  • 2. 运城学院生命科学系,山西 运城,044000
  • 折叠

摘要

Abstract

The optimization of stand spatial structure is a key issue in achieving sustainable forest management.Tradi-tional optimization methods often exhibit low efficiency in handling complex spatial relationships and large-scale data.This study proposed a stand spatial structure optimization method based on Graph Attention Networks(GAT).An integrated spatial structure evaluation system was established using the entropy-weighted matter-element analysis method,and a graph neural network model was constructed based on stand data from the Tanglin Forest Farm of the Xinqing Forestry bu-reau in northern Yichun,Heilongjiang Province.The model was applied to perform multi-objective optimization analysis of stand spatial structure.Experimental results showed that at a 25%harvesting intensity,the integrated spatial structure index improved from 4.336 to 7.256.The GAT model demonstrated superior performance in capturing complex spatial re-lationships and optimizing multi-objective tasks.This study provides an innovative and intelligent approach for optimizing stand spatial structure and managing forests,contributing to the enhancement of forest ecosystem health and stability.

关键词

林分空间结构/图神经网络/物元分析法/图注意力网络/熵权法

Key words

Stand spatial structure/graph neural networks/matter-element analysis/graph attention network/entropy weighting method

分类

林学

引用本文复制引用

张雨晨,董希斌,张甜,郭奔,张佳旺,滕弛,宋梓恺..基于图神经网络的林分空间结构优化[J].森林工程,2025,41(3):451-461,11.

基金项目

国家重点研发计划项目(2022YFD2201001) (2022YFD2201001)

山西省基础研究计划项目(20210302123375). (20210302123375)

森林工程

OA北大核心

1006-8023

访问量0
|
下载量0
段落导航相关论文