| 注册
首页|期刊导航|森林工程|融合哨兵2号时序特征与连续变化检测分类算法的优势树种识别

融合哨兵2号时序特征与连续变化检测分类算法的优势树种识别

陈丹 李晶 霍江润 马天跃 闫星光 李雨霏

森林工程2025,Vol.41Issue(3):505-516,12.
森林工程2025,Vol.41Issue(3):505-516,12.DOI:10.7525/j.issn.1006-8023.2025.03.007

融合哨兵2号时序特征与连续变化检测分类算法的优势树种识别

Integration of Sentinel-2 Temporal Features and Continuous Change Detection Classification Algorithm for Dominant Tree Species Identification

陈丹 1李晶 1霍江润 1马天跃 1闫星光 1李雨霏1

作者信息

  • 1. 中国矿业大学 地球科学与测绘工程学院,北京 100083
  • 折叠

摘要

Abstract

The identification of dominant tree species is an important part of forestry resource surveys.Improving the ac-curacy of dominant tree species identification has significant practical implications for conducting forest resource surveys and related research.Using the Google Earth Engine(GEE)cloud platform,we obtained Sentinel-2 time series images for the Huodong mining area from January to December 2023.The annual growth trajectory features of dominant tree spe-cies were constructed based on the CCDC algorithm and the NDFI index.A dominant tree species hierarchical identifica-tion method combining"trajectory features+spectral features+texture features"of long-time series remote sensing im-ages was proposed.A control group of"spectral features+texture features"was set up,and hierarchical classification and random forest classification algorithms were used to identify 7 dominant tree species(Pinus tabuliformis,Quercus wutaishansea,Betula playphylla,Larix principis-rupprechtii,Platycladus orientalis,Populus davidiana,and poplars spp.)in the Huodong mining area.The results showed that:1)The NDFI index can effectively distinguish between de-ciduous forests and evergreen forests;2)The dominant tree species identification based on"trajectory features+spectral features+texture features"performed well,with an overall classification accuracy of 79.6%and a Kappa coefficient of 0.742 in the study area,which was 7.3%higher than the control group.

关键词

优势树种识别/GEE/时序轨迹特征/归一化退化指数/CCDC算法/时间谐波分析

Key words

Dominant tree species identification/GEE/temporal trajectory features/normalized disturbance index/CCDC algorithm/time series harmonic analysis

分类

林学

引用本文复制引用

陈丹,李晶,霍江润,马天跃,闫星光,李雨霏..融合哨兵2号时序特征与连续变化检测分类算法的优势树种识别[J].森林工程,2025,41(3):505-516,12.

基金项目

国家重点研发计划项目(2022YFE0127700). (2022YFE0127700)

森林工程

OA北大核心

1006-8023

访问量0
|
下载量0
段落导航相关论文