| 注册
首页|期刊导航|森林工程|基于遗传算法的被动式木窗材下料优化

基于遗传算法的被动式木窗材下料优化

任长清 武子棋 闫杰 丁星尘 杨春梅

森林工程2025,Vol.41Issue(3):595-602,8.
森林工程2025,Vol.41Issue(3):595-602,8.DOI:10.7525/j.issn.1006-8023.2025.03.016

基于遗传算法的被动式木窗材下料优化

Optimization of Passive Wooden Window Material Cutting Based on Genetic Algorithm

任长清 1武子棋 1闫杰 1丁星尘 1杨春梅1

作者信息

  • 1. 东北林业大学 机电工程学院,哈尔滨 150040||东北林业大学 林业与木工机械工程中心,哈尔滨 150040
  • 折叠

摘要

Abstract

In the customization process of passive wooden window manufacturing,reducing material waste during frame cutting is key to cost reduction.This problem is modeled as a one-dimensional cutting stock problem.To address the issue of traditional genetic algorithms where the individual encoding method tends to lead to the destruction of cutting pat-terns and low exploration efficiency during iterations,a new individual encoding method is proposed to maintain the in-tegrity of cutting patterns throughout the evolutionary process.Additionally,a heuristic strategy and a correction strategy are introduced for individual correction and population evolution.Simulation results show that for different test cases,the average material utilization rate,excluding the last remnants,exceeds 99%,with some improvements in the length of the last remnants compared to other algorithms.For two sets of real production data from enterprises,the proposed algo-rithm achieves the theoretical lower bound,with average utilization rates(excluding the last remnants)of 99.49%and 99.66%,respectively,outperforming the results of the company's existing software.This demonstrates the algorithm's potential to effectively reduce costs and provide practical solutions in engineering applications.

关键词

一维下料问题/遗传算法/启发式算法/种群编码/可用剩余物

Key words

One-dimensional cutting stock problem/genetic algorithm/heuristic algorithm/population encoding/us-able leftovers

分类

农业科技

引用本文复制引用

任长清,武子棋,闫杰,丁星尘,杨春梅..基于遗传算法的被动式木窗材下料优化[J].森林工程,2025,41(3):595-602,8.

基金项目

黑龙江省重大成果转化项目(CG23013). (CG23013)

森林工程

OA北大核心

1006-8023

访问量0
|
下载量0
段落导航相关论文