| 注册
首页|期刊导航|现代电子技术|基于AFFRLS-MIAUKF算法的锂离子电池SOC估算

基于AFFRLS-MIAUKF算法的锂离子电池SOC估算

王君瑞 李进 季长江 谭露

现代电子技术2025,Vol.48Issue(10):7-14,8.
现代电子技术2025,Vol.48Issue(10):7-14,8.DOI:10.16652/j.issn.1004-373x.2025.10.002

基于AFFRLS-MIAUKF算法的锂离子电池SOC估算

Lithium-ion battery SOC estimation based on AFFRLS-MIAUKF algorithm

王君瑞 1李进 1季长江 1谭露1

作者信息

  • 1. 北方民族大学 电气信息工程学院,宁夏 银川 750000
  • 折叠

摘要

Abstract

In the process of estimating the state of charge(SOC)of lithium-ion batteries,establishing a suitable model is the first step,and the accuracy of parameter identification in the model is crucial for estimating SOC.In order to improve the accuracy of lithium-ion battery SOC estimation,an algorithm based on adaptive forgetting factor recursive least squares(AFFRLS)and multi-new adaptive unscented Kalman filter(MIAUKF)is proposed to estimate battery SOC.Taking the ternary lithium-ion battery as the experimental object,the second-order RC equivalent circuit model is established,and the model parameters are identified by means of two identification methods:offline identification and adaptive forgetting factor recursive least squares.Under the condition of hybrid pulse power characteristic(HPPC),AFFRLS-MIAUKF algorithm is used to estimate the SOC of lithium-ion battery,and compare with offline identification MIAUKF algorithm and UKF algorithm.The experimental results show that AFFRLS-MIAUKF algorithm has higher accuracy and the average error can be kept within 0.5%.

关键词

锂离子电池/电池荷电状态估算/无迹卡尔曼滤波/自适应遗忘因子递推最小二乘/多新息理论/等效电路模型

Key words

lithium-ion battery/battery state of charge estimation/unscented Kalman filter/adaptive forgetting factor recursive least square/multi-new theory/equivalent circuit model

分类

电子信息工程

引用本文复制引用

王君瑞,李进,季长江,谭露..基于AFFRLS-MIAUKF算法的锂离子电池SOC估算[J].现代电子技术,2025,48(10):7-14,8.

基金项目

宁夏自然科学基金项目(2024AAC03182) (2024AAC03182)

国家自然科学基金资助项目(52167004) (52167004)

宁夏回族自治区智能装备与精密检测技术研究应用创新团队(2022BSB03104) (2022BSB03104)

现代电子技术

OA北大核心

1004-373X

访问量0
|
下载量0
段落导航相关论文