| 注册
首页|期刊导航|水利水电技术(中英文)|基于可解释GWO-XGBoost的隧道挤压预测研究

基于可解释GWO-XGBoost的隧道挤压预测研究

李占科 许正魁 王艳宁 王昆 贾运甫 车璇 关鹏

水利水电技术(中英文)2025,Vol.56Issue(4):82-93,12.
水利水电技术(中英文)2025,Vol.56Issue(4):82-93,12.DOI:10.13928/j.cnki.wrahe.2025.04.007

基于可解释GWO-XGBoost的隧道挤压预测研究

Tunnel squeezing prediction using explainable GWO-XGBoost model

李占科 1许正魁 1王艳宁 2王昆 3贾运甫 4车璇 5关鹏5

作者信息

  • 1. 中国水利水电第四工程局有限公司,青海西宁 810000
  • 2. 天津市政工程设计研究总院有限公司,天津 300000
  • 3. 中国水电建设集团十五工程局有限公司,陕西西安 712000
  • 4. 新疆水利水电勘测设计研究院有限责任公司,新疆乌鲁木齐 830000
  • 5. 中国地质大学(武汉)工程学院,湖北武汉 430074
  • 折叠

摘要

Abstract

[Objective]To achieve accurate prediction of tunnel squeezing,[Methods]an eXtreme Gradient Boosting(XGBoost)model tuned by Grey Wolf Optimization(GWO)was constructed for tunnel squeezing prediction.Training and testing of the GWO-XGBoost model were conducted on an imbalanced dataset with missing data that had undergone imputation and oversampling techniques.The input features of the GWO-XGBoost model included tunnel burial depth(H),rock tunnelling quality index(Q),diameter(D),strength stress ratio(SSR),and support stiffness(K).The performance of the GWO-XGBoost model was rigorously evaluated using a suite of metrics,including accuracy(ACC),the F1 score,the Kappa coefficient,and the Matthews correlation coefficient(MCC).[Results]The result indicated that the presented GWO-XGBoost model achieved an impressive prediction accuracy of 98.94%on both the training set and the test set.Moreover,on the test set,the cumulative value of the evaluation metrics soared to 5.913 1,underscoring the model's exceptional predictive capabilities.The average Shapley Additive exPlanation(SHAP)values for SSR,D,K,Q,and H were 3.06,1.07,0.82,0.73,and 0.51,respectively,indicating that SSR was the most influential feature affecting the model's output result.[Conclusion]The application of the GWO-XGBoost model to the Huzhubeishan Tunnel and Muzhailing Tunnel has yielded squeezing predictions that closely align with the actual conditions observed,proving the high applicability and predictive accuracy of the presented model in tunnel engineering.

关键词

隧道挤压预测/XGBoost/灰狼优化算法/模型解释/缺失数据集/变形/影响因素

Key words

tunnel squeezing prediction/XGBoost/grey wolf optimizer/model explanation/missing dataset/deformation/influencing factors

分类

交通工程

引用本文复制引用

李占科,许正魁,王艳宁,王昆,贾运甫,车璇,关鹏..基于可解释GWO-XGBoost的隧道挤压预测研究[J].水利水电技术(中英文),2025,56(4):82-93,12.

基金项目

国家自然科学基金青年科学基金项目(52008383) (52008383)

湖北省自然科学基金项目(2023AFB369) (2023AFB369)

水利水电技术(中英文)

OA北大核心

1000-0860

访问量0
|
下载量0
段落导航相关论文