| 注册
首页|期刊导航|网络与信息安全学报|基于改进Cycle-GAN的样本数据生成在入侵检测中的应用研究

基于改进Cycle-GAN的样本数据生成在入侵检测中的应用研究

曾庆鹏 郭航恺

网络与信息安全学报2025,Vol.11Issue(2):87-101,15.
网络与信息安全学报2025,Vol.11Issue(2):87-101,15.DOI:10.11959/j.issn.2096-109x.2025019

基于改进Cycle-GAN的样本数据生成在入侵检测中的应用研究

Application research of sample data generation based on improved Cycle-GAN in intrusion detection

曾庆鹏 1郭航恺1

作者信息

  • 1. 南昌大学数学与计算机学院,江西 南昌 330031
  • 折叠

摘要

Abstract

The issue of slow data updates,insufficient data samples for certain intrusion categories,and imbalanced distributions between normal and abnormal data sets in standard intrusion detection data sets have been addressed through both data sample augmentation and detection model optimization.The intrusion sample data was converted into graph data to serve as input for Cycle-GAN,and a spatial attention mechanism was introduced into the Cycle-GAN generator.This approach preserved data traffic characteristics while extracting key feature information and utilized unsupervised learning to optimize the original data set distribution.A classification network based on global attention and residual structure was proposed,taking the preprocessed graph data as input.After serializing channel attention and spatial attention to obtain global attention,input features were weighted.Finally,the model outputted the intrusion classification.Experiments on the CIC-IDS2017 and NSL-KDD data sets showed that,com-pared to similar models trained with the original data,the F1 score increased from 0.853 2 to 0.978 6 and the recall rate from 0.914 8 to 0.984 2 on the CIC-IDS2017 data set,and the F1 score increased from 0.646 2 to 0.844 3 and the recall rate from 0.726 to 0.876 8 on the NSL-KDD data set.This indicates that the proposed method effectively addressed the problems of slow data updates and insufficient samples for certain intrusion categories in intrusion de-tection.

关键词

入侵检测/图数据转换/循环生成对抗网络/样本数据生成

Key words

intrusion detection/graph data transformation/Cycle-GAN/sample data generation

分类

计算机与自动化

引用本文复制引用

曾庆鹏,郭航恺..基于改进Cycle-GAN的样本数据生成在入侵检测中的应用研究[J].网络与信息安全学报,2025,11(2):87-101,15.

基金项目

国家自然科学基金(62466035) The National Natural Science Foundation of China(62466035) (62466035)

网络与信息安全学报

2096-109X

访问量0
|
下载量0
段落导航相关论文