| 注册
首页|期刊导航|网络与信息安全学报|面向6G智能反射面辅助的联邦学习安全速率优化

面向6G智能反射面辅助的联邦学习安全速率优化

武影影 毛伯敏

网络与信息安全学报2025,Vol.11Issue(2):115-124,10.
网络与信息安全学报2025,Vol.11Issue(2):115-124,10.DOI:10.11959/j.issn.2096-109x.2025021

面向6G智能反射面辅助的联邦学习安全速率优化

Federated learning secrecy rate optimization for 6G intelligent reflecting surface assistance

武影影 1毛伯敏1

作者信息

  • 1. 西北工业大学网络空间安全学院,陕西 西安 710129||西北工业大学太仓长三角研究院,江苏 太仓 215400
  • 折叠

摘要

Abstract

Non-orthogonal multiple access(NOMA)based federated learning(FL)can achieve the massive connec-tivity of internet of thing(IoT)devices,high rate transmission,and pervasive intelligence in 6G networks.How-ever,the stochastic channels in NOMA can lead to fluctuations in the transmission delay of model parameters.Fre-quent model updates may cause competition for communication and computational resources,and the uploaded model can be intercepted,leading to privacy leakage.To address these issues,an intelligent reflecting surface(IRS)-assisted NOMA-based FL communication system was proposed.In this system,IRS was leveraged to reconfigure the wireless communication environment,enhancing the signal strength at the legitimate receivers and suppressing the received signal at eavesdroppers(Eves),thereby providing a high-reliability and high-security communication foundation for federated learning.Firstly,the IRS-assisted wireless communication model was constructed.Subse-quently,the minimum user-BS secrecy rate was maximized through the joint optimization of IoT device transmit power and IRS phase shifts.Finally,the deep deterministic policy gradient(DDPG)algorithm was employed to solve the optimization problem,with the action space defined as the transmit power and IRS phase shift matrix,and the channel state information and previous action constituting the state space.Simulation results demonstrated that deploying IRS in the system can greatly enhance the secrecy rate of the FL model update compared to artificial noise(AN),the block coordinate ascent method(BCAM),the scheme without IRS,and the scheme with random phase IRS,providing physical layer support for the subsequent deployment of FL algorithms in this communication system.

关键词

非正交多址接入/6G/联邦学习/智能反射面/安全速率

Key words

non-orthogonal multiple access/6G/federated learning/intelligent reflecting surface/secrecy rate

分类

电子信息工程

引用本文复制引用

武影影,毛伯敏..面向6G智能反射面辅助的联邦学习安全速率优化[J].网络与信息安全学报,2025,11(2):115-124,10.

基金项目

国家重点研发计划(2024YFF1401305) The National Key R&D Program of China(2024YFF1401305) (2024YFF1401305)

网络与信息安全学报

2096-109X

访问量0
|
下载量0
段落导航相关论文