| 注册
首页|期刊导航|天然气工业|基于轻量化网络和多域损失函数的随机噪声衰减方法

基于轻量化网络和多域损失函数的随机噪声衰减方法

陈伟 李安禹 李韵竹 未晛 张庆臣 金彦 魏龙海

天然气工业2025,Vol.45Issue(4):60-69,10.
天然气工业2025,Vol.45Issue(4):60-69,10.DOI:10.3787/j.issn.1000-0976.2025.04.005

基于轻量化网络和多域损失函数的随机噪声衰减方法

Random noise attenuation based on lightweight network and multi-domain loss function

陈伟 1李安禹 2李韵竹 3未晛 4张庆臣 2金彦 5魏龙海6

作者信息

  • 1. 非常规油气省部共建协同创新中心·长江大学||气象信息与信号处理四川省高校重点实验室·成都信息工程大学||数学地质四川省重点实验室·成都理工大学
  • 2. 非常规油气省部共建协同创新中心·长江大学
  • 3. 中国石油川庆钻探工程有限公司地质勘探开发研究院
  • 4. 北京劳动保障职业学院城市安全学院
  • 5. 武汉市工程科学技术研究院新技术研发中心
  • 6. 中交第二公路勘察设计研究院有限公司
  • 折叠

摘要

Abstract

Random noise seriously affects the quality of seismic data,severely interfering seismic interpretation and inversion analysis,especially when the effective signal is relatively weak in the process of deep oil and gas exploration.In order to improve the signal to noise ratio(RSN)of seismic data,a lightweight network architecture with multi-scale feature extraction capability was designed,a parallel multi-scale large kernel convolution module was used to capture local features across scales,and the global feature associations were established on the basis of channel-space attention mechanism.Then the time-frequency domain joint optimization objective function was constructed,and time domain mean square error and frequency domain energy loss were balanced by adaptive weight coefficient,to effectively removing random noise while reducing effective signal loss.Next,following the data block training strategy,the large-scale seismic data was segmented into training sample sets that can be processed in parallel to improve the generalization ability of the model.Finally,a method combining lightweight network and multi-domain loss function was developed to remove random noise from seismic data.The following results are obtained.First,by optimizing the loss values in the time and frequency domains,the multi-domain loss function ensures that the integrity and local details of the original signal are protected to the maximum extent while noise is suppressed,and the RSN of the data is effectively improved.Second,the proposed method performs better in params(down about 14.29%),floating-point operations per second(FLOPS,down about 15%),and training duration(down about 40.88%),compared with feedforward denoising convolutional neural networks(DnCNN).Third,multi-scale parallel large-kernel convolution realizes the collaborative extraction of local features across scales by performing three types of parallel dilated convolutions,which can better handle complex seismic data.In conclusion,the proposed method is effective in removing random noise in seismic data,achieving low computing cost and faster training by optimizing the network structure,which is of great significance to effective seismic survey.

关键词

地震资料处理/地震数据去噪/随机噪声/深度学习/多尺度/轻量化

Key words

Seismic data processing/Seismic data denoising/Random noise/Deep learning/Multi-scale/Lightweight

分类

地质学

引用本文复制引用

陈伟,李安禹,李韵竹,未晛,张庆臣,金彦,魏龙海..基于轻量化网络和多域损失函数的随机噪声衰减方法[J].天然气工业,2025,45(4):60-69,10.

基金项目

国家自然科学基金项目"基于经验模态分解的自由表面多次波衰减方法研究"(编号:41804140)、长江大学非常规油气省部共建协同创新中心开放基金项目"鄂西页岩储层地震弱信号智能检测方法研究"(编号:UOG2024-19)、武汉市科技计划重点项目"基于水平钻的隧道围岩性态全域探测技术与装备研发"(编号:2023010402010609)、深地国家科技重大专项项目"地球深部探测与矿产资源勘查"(编号:2024ZD1001003). (编号:41804140)

天然气工业

OA北大核心

1000-0976

访问量8
|
下载量0
段落导航相关论文