| 注册
首页|期刊导航|液晶与显示|基于动态特征剔除与轻量化检测的视觉SLAM算法

基于动态特征剔除与轻量化检测的视觉SLAM算法

张恒 王磊 张鹏超 常建 贺兴

液晶与显示2025,Vol.40Issue(5):727-739,13.
液晶与显示2025,Vol.40Issue(5):727-739,13.DOI:10.37188/CJLCD.2024-0325

基于动态特征剔除与轻量化检测的视觉SLAM算法

Visual SLAM algorithm based on dynamic feature elimination and dense mapping

张恒 1王磊 1张鹏超 1常建 1贺兴1

作者信息

  • 1. 陕西理工大学 机械工程学院,陕西 汉中 723001
  • 折叠

摘要

Abstract

In order to solve the problem that the simultaneous localization and mapping(SLAM)algorithm has low positioning accuracy and cannot generate effective dense maps in dynamic scenes,a visual SLAM algorithm based on dynamic feature culling and dense mapping is proposed.Based on the ORB-SLAM3 algorithm,a feature point screening thread is added,and the lightweight YOLOV8 network is used to detect dynamic objects in the environment,and the dynamic feature points in the environment are eliminated by combining the optical flow method and the polar geometric constraint.The dense point cloud map is constructed by using the generated keyframes and calculated poses in the newly added dense mapping thread.Compared with the original ORB-SLAM3,the positioning errors are reduced by 90%.At the same time,the ghosting caused by dynamic objects is removed from the dense mapping results.The new algorithm effectively solves the problem that the visual SLAM algorithm cannot locate and establish an effective map in the dynamic environment by adding the feature point screening thread and dense mapping thread,and greatly enhances the accuracy and robustness of the SLAM system in dynamic scenes.

关键词

动态环境/视觉SLAM/目标检测/特征剔除/稠密建图

Key words

dynamic environment/visual SLAM/object detection/feature culling/dense mapping

分类

计算机与自动化

引用本文复制引用

张恒,王磊,张鹏超,常建,贺兴..基于动态特征剔除与轻量化检测的视觉SLAM算法[J].液晶与显示,2025,40(5):727-739,13.

基金项目

国家自然科学基金(No.62176146) Supported by National Natural Science Foundation of China(No.62176146) (No.62176146)

液晶与显示

OA北大核心

1007-2780

访问量0
|
下载量0
段落导航相关论文