| 注册
首页|期刊导航|中国电机工程学会电力与能源系统学报(英文版)|Digital Twin-supported Battery State Estimation Based on TCN-LSTM Neural Networks and Transfer Learning

Digital Twin-supported Battery State Estimation Based on TCN-LSTM Neural Networks and Transfer Learning

Kai Zhao Ying Liu Yue Zhou Wenlong Ming Jianzhong Wu

中国电机工程学会电力与能源系统学报(英文版)2025,Vol.11Issue(2):567-579,13.
中国电机工程学会电力与能源系统学报(英文版)2025,Vol.11Issue(2):567-579,13.DOI:10.17775/CSEEJPES.2024.00900

Digital Twin-supported Battery State Estimation Based on TCN-LSTM Neural Networks and Transfer Learning

Digital Twin-supported Battery State Estimation Based on TCN-LSTM Neural Networks and Transfer Learning

Kai Zhao 1Ying Liu 1Yue Zhou 1Wenlong Ming 1Jianzhong Wu1

作者信息

  • 1. School of Engineering,Cardiff University,Cardif CF243AA,Wales,UK
  • 折叠

摘要

关键词

Battery energy storage system/battery state estimation/deep learning/digital twin/transfer learning

Key words

Battery energy storage system/battery state estimation/deep learning/digital twin/transfer learning

引用本文复制引用

Kai Zhao,Ying Liu,Yue Zhou,Wenlong Ming,Jianzhong Wu..Digital Twin-supported Battery State Estimation Based on TCN-LSTM Neural Networks and Transfer Learning[J].中国电机工程学会电力与能源系统学报(英文版),2025,11(2):567-579,13.

中国电机工程学会电力与能源系统学报(英文版)

2096-0042

访问量0
|
下载量0
段落导航相关论文