| 注册
首页|期刊导航|重型机械|基于CMFAE和IALMMo-0的轴承故障诊断新方法研究

基于CMFAE和IALMMo-0的轴承故障诊断新方法研究

刘东曜

重型机械Issue(2):16-22,7.
重型机械Issue(2):16-22,7.

基于CMFAE和IALMMo-0的轴承故障诊断新方法研究

Research on a new method of diagnosis of bearing fault diagnosis based on CMFAE and IALMMO-0

刘东曜1

作者信息

  • 1. 山西工程技术学院,山西 阳泉 045000
  • 折叠

摘要

Abstract

In order to reduce external interference and improve the accuracy of bearing fault diagnosis,this article proposes a new method based on Composite Multiscale Fractional-order Attention Entropy(CMFAE)and Improving Autonomous Learning Multi-model 0-Order(IALMMo-0).First of all,in response to the defects of entropy,this article proposes a Composite Multiscale Fractional-order Attention Entropy(CMFAE),And the original vibration signal is comprehensively extracted using CMFAE.Secondly,in order to avoid more redundant information in the sample,which affects the accuracy rate of fault diagnosis,the Linear Discriminant Analysis(LDA)is used to reduce the dimension of the obtained feature vector.Finally,for the defects of the Autonomous Learning Multi-model 0-Order(ALMMo-0)Classifier,this article proposes to use the information entropy weight method to weight the Mahalanobis distance,and then use Pearson correlation coefficient to improve the weighted Mahalanobis distance,forming Improved Weighted Mahalanobis Distance(IWMD);And IWMD was used to improve its classifier,forming IALMMo-0 classifier;Meanwhile,train the IALMMo-0 classifier using feature vectors and test its performance.In order to test the accuracy and effectiveness of the new methods mentioned in the article,the bearing data was used to analyze in the test,and the accuracy of the failure recognition was as high as 95.601%through test analysis.

关键词

轴承/复合多尺度分数阶注意熵/线性判别分析法/零阶自主学习多模型分类器

Key words

bearing/composite multiscale fractional-order attention entropy/linear discriminant analysis/au-tonomous learning multi-model 0-order

分类

机械工程

引用本文复制引用

刘东曜..基于CMFAE和IALMMo-0的轴承故障诊断新方法研究[J].重型机械,2025,(2):16-22,7.

重型机械

1001-196X

访问量2
|
下载量0
段落导航相关论文